K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 5 2019

\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow\left(a+b\right)^2\le2\Rightarrow a+b\le\sqrt{2}\Rightarrow\frac{1}{a+b}\ge\frac{\sqrt{2}}{2}\)

\(T=2+a+b+\frac{1}{a}+\frac{1}{b}+\frac{a}{b}+\frac{b}{a}\ge2+a+b+\frac{4}{a+b}+\frac{a}{b}+\frac{b}{a}\)

\(T\ge2+a+b+\frac{2}{a+b}+\frac{a}{b}+\frac{b}{a}+\frac{2}{a+b}\)

\(T\ge2+2\sqrt{\frac{2\left(a+b\right)}{a+b}}+2\sqrt{\frac{ab}{ab}}+2.\frac{\sqrt{2}}{2}=4+3\sqrt{2}\)

\(\Rightarrow T_{min}=4+3\sqrt{2}\) khi \(a=b=\frac{1}{\sqrt{2}}\)

20 tháng 8 2018

câu hỏi ko tl cx thấy xàm xàm xàm xmà

24 tháng 11 2017

fkfkbang14

11 tháng 6 2015

2) M = (x25 + 1 + 1 + 1 + 1) - 5x5 + 2

Áp dụng BĐT Cô - si cho 5 số dương x25; 1;1;1;1 ta có: x25 + 1 + 1 + 1 + 1 \(\ge\)5.\(\sqrt[5]{x^{25}.1.1.1.1}=x^5\) = 5x5

=> M \(\ge\) 5x5 - 5x5 + 2 = 2

Vậy M nhỏ nhất = 2 khi x25 = 1 => x = 1

11 tháng 6 2015

\(ab=\frac{1}{c};c=\frac{1}{ab}\)

\(a+b+c-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}-ab\)

\(=\left(a+b-ab-1\right)+\left(\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}+1\right)\)

\(=-\left(a-1\right)\left(b-1\right)+\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\)

\(=-\left(a-1\right)\left(b-1\right)+\frac{\left(a-1\right)\left(b-1\right)}{ab}\)

\(=-\left(a-1\right)\left(b-1\right)+\left(a-1\right)\left(b-1\right)c\)

\(=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

Do biểu thức ban đầu dương nên ta có đpcm

 

14 tháng 6 2018

Áp dụng BĐT AM-GM ta có:

\(T=\left(a+1\right)\left(1+\frac{1}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)

\(=\frac{a}{b}+\frac{b}{a}+a+\frac{1}{a}+b+\frac{1}{b}+2\)

\(=\frac{a}{b}+\frac{b}{a}+\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}+2\)

\(\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{a\cdot\frac{1}{2a}}+2\sqrt{b\cdot\frac{1}{2b}}+2\sqrt{\frac{1}{2a}\cdot\frac{1}{2b}}+2\)

\(=4+2\sqrt{2}+\frac{1}{\sqrt{ab}}\ge4+2\sqrt{2}+\frac{1}{\frac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)

\(=4+3\sqrt{2}\)

Dấu "=" khi \(a=b=\frac{1}{\sqrt{2}}\)

23 tháng 7 2015

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{bc+ac+ab}{abc}=0\Rightarrow bc+ac+ab=0\)

Biến đổi vế phải ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(=a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2+2.0=a^2+b^2+c^2\)

=> ĐPCM 

B, -x^2 + 2x - 4 = - ( x^2 - 2x + 4 ) = - ( x^2 - 2x + 1 + 3 ) = -(x +  1 )^2 - 3 <= -3

=> 3/ -(x+1)^2-3 >= 3/-3=-1 

Vậy GTNN của A là -1 khi x = -1

 

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

12 tháng 9 2021

Dễ chứng minh được \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)

\(\Rightarrow2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow a+b+c\le6\)

Ta có : \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(=1-\frac{1}{a+1}+1-\frac{1}{b+1}+1-\frac{1}{c+1}\)

\(=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(\le3-\frac{9}{a+b+c+3}\le3-\frac{9}{6+3}=2\)

Dấu "=" xảy ra khi \(a=b=c=2\)

12 tháng 9 2021

bạn ơi , kết quả thì đúng r nhưng tại sao đoạn \(2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le6\)