Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a;b>0\(\Rightarrow a+b>=2\sqrt{ab}\Rightarrow1>=2\sqrt{ab}\Rightarrow\frac{1}{2}>=\sqrt{ab}\Rightarrow\frac{1}{4}>=ab\)(bđt cosi)
dấu = xảy ra khi a=b=\(\frac{1}{2}\)
\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=1+\frac{2}{a}+\frac{1}{a^2}+1+\frac{2}{b}+\frac{1}{b^2}\)
\(=2+\left(\frac{2}{a}+\frac{2}{b}\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}\right)>=2+2\sqrt{\frac{2}{a}\cdot\frac{2}{b}}+2\cdot\sqrt{\frac{1}{a^2}\cdot\frac{1}{b^2}}\)(bđt cosi )
dấu = xảy ra khi \(\frac{2}{a}=\frac{2}{b}\Rightarrow a=b=\frac{1}{2};\frac{1}{a^2}=\frac{1}{b^2}\Rightarrow a=b=\frac{1}{2}\)\(\Rightarrow\)dấu = xảy ra khi \(a=b=\frac{1}{2}\)
\(=2+\frac{4}{\sqrt{ab}}+\frac{2}{\sqrt{a^2b^2}}=2+\frac{4}{\sqrt{ab}}+\frac{2}{ab}>=2+\frac{4}{\frac{1}{2}}+\frac{2}{\frac{1}{4}}=2+8+8=18\)
\(\Rightarrow M>=18\Rightarrow\)min M là 18
vậy min M là 18 khi a=b=\(\frac{1}{2}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :
\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=\frac{\left(1+\frac{1}{a}\right)^2}{1}+\frac{\left(1+\frac{1}{b}\right)^2}{1}\ge\frac{\left(1+\frac{1}{a}+1+\frac{1}{b}\right)^2}{2}=\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)}{2}\)(1)
Lại có \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)(2)
Từ (1) và (2) => \(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra khi a = b = 1/2
Vậy MinM = 18, đạt được khi a = b = 1/2
1)cho x,y thoả mãn 2x^2+1/x^2+y^2/4=4
tìm GTNN T=xy
2)
cho a,b>0 va a+b=1
tìm GTNN M=(1+1/a)^2+(1+1/b)^2
Áp dụng BĐT AM-GM ta có:
\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\dfrac{1}{2}\ge\sqrt{ab}\Rightarrow\dfrac{1}{4}\ge ab\)
Lại có theo AM-GM ta có:
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(\Rightarrow\dfrac{3}{a^2+b^2}\ge\dfrac{3}{2ab}\)
\(\Rightarrow A\ge\dfrac{3}{2ab}+\dfrac{2}{ab}\ge\dfrac{3}{2\cdot\dfrac{1}{4}}+\dfrac{2}{\dfrac{1}{4}}=14\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{2}\)
Vậy \(A_{Min}=14\) khi \(a=b=\dfrac{1}{2}\)
Lời gải:
Áp dụng BĐT Cauchy Schwarz và BĐT AM-GM:
$M=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}$
$\geq \frac{(1+1+1+1+1)^2}{2ab+2ab+a^2+ab+b^2+ab+a^2+b^2}=\frac{25}{2a^2+2b^2+6ab}$
$=\frac{25}{2(a^2+b^2+2ab)+2ab}$
$=\frac{25}{2(a+b)^2+2ab}=\frac{25}{2+2ab}\geq \frac{25}{2+2.\frac{(a+b)^2}{4}}=\frac{25}{2+\frac{2}{4}}=10$
Vậy $M_{\min}=10$. Giá trị này đạt tại $a=b=\frac{1}{2}$
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{16}\)
Ta có: \(\frac{1}{a^2+b^2}+\frac{2}{ab}+ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{3}{2ab}+384ab-383ab\)
\(\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{3}{2ab}.384ab}-383.\frac{1}{16}\)
\(=\frac{4}{\left(a+b\right)^2}+2.24-\frac{383}{16}=\frac{641}{16}\)
Dấu "=" xảy ra <=> a = b = 1/4
\(Q=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{ab}+\frac{1}{ab}\ge\frac{16}{a^2+b^2+ab+ab}=\frac{16}{\left(a+b\right)^2}=4\)
\(Q_{min}=4\) khi \(a=b=1\)
Hoặc: \(Q=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{ab}\ge\frac{2}{ab}+\frac{2}{ab}=\frac{4}{ab}\ge\frac{16}{\left(a+b\right)^2}=4\)
Ta có : \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)
Sử dụng BĐT Bunhiacopxki ta có :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}=\frac{1^2}{a^2}+\frac{1^2}{b^2}+\frac{2^2}{2ab}\ge\frac{\left(1+1+2\right)^2}{a^2+b^2+2ab}\)
\(=\frac{4^2}{\left(a+b\right)^2}=\frac{16}{2^2}=\frac{16}{4}=4\)
Dấu = xảy ra khi và chỉ khi \(a=b=1\)
Vậy \(A_{min}=4\)khi \(a=b=1\)
\(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)
\(\ge\frac{\left(1+1+2\right)^2}{a^2+2ab+b^2}=\frac{16}{\left(a+b\right)^2}=\frac{16}{4}=4\)
Dấu "=" xảy ra <=> a = b = 1
Ta có: \(\frac{\left(a+b\right)}{2}=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
<=> \(a+b\le1\)
\(P=\frac{1}{a^2+b^2+2}+\frac{1}{ab}\ge\frac{1}{\frac{\left(a+b\right)}{2}+2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge\frac{1}{\frac{1}{2}+2}+\frac{1}{\frac{1}{4}}=\frac{22}{5}\)
Dấu = xảy ra <=> a = b = 1/2
mình chưa hiểu tại sao a+b<=1