Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)
Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)
Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)
* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt
a.
\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)
Dấu "=" khi \(a=b=\frac{1}{2}\)
b.
\(B=\frac{2}{ab}+\frac{3}{a^2+b^2}=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
\(\ge3\cdot\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=14\)
Dấu "=" khi \(a=b=\frac{1}{2}\)
c.
Ta có:
\(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) với mọi x,y
Áp dụng ta có:
\(C=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
2.
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\frac{a}{\sqrt{x}}+\sqrt{y}\cdot\frac{b}{\sqrt{y}}\right)^2\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{a^2}{x}+\frac{b^2}{y}\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Áp dụng nó ta chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Áp dụng vào bài làm:
\(D=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{ab+ca+bc+ab+ca+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
We have : \(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)
By Cauchy - Schwarz and AM - GM have :
\(A\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}=\frac{6}{\left(a+b\right)^2}\ge6\)
Then greatest posible of A is 6 when \(a=b=\frac{1}{2}\)
\(S=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
\(=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4\)
Dễ có:\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\ge\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{8}{\left(a+b\right)^2}=8\)
Khi đó:\(S\ge\frac{1}{2}+8+4=\frac{25}{2}\)
Vậy ta có đpcm
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
Ta có :\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{3}{2ab}\)
\(A\ge\frac{4}{2ab+a^2+b^2}+\frac{3}{2ab}\)
\(A\ge\frac{4}{\left(a+b\right)^2}+\frac{3}{\frac{\left(a+b\right)^2}{2}}\)
\(A\ge4+6=10\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2ab\\a+b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)
Vậy Min A = 10 <=> a = b = 1/2
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
Ta có : a>0 \(\Rightarrow a+1>1\)
\(\Rightarrow\frac{a^2}{a+1}< \frac{a^2}{1}=a^2\)
Ta có :b>0\(\Rightarrow b+1>1\)
\(\Rightarrow\frac{b^2}{b+1}< \frac{b^2}{1}=b^2\)
\(\Rightarrow A< a^2+b^2\)
vì a;b>0\(\Rightarrow A=\frac{a^2}{a+1}+\frac{b^2}{b+1}>=\frac{\left(a+b\right)^2}{a+1+b+1}=\frac{\left(a+b\right)^2}{a+b+2}\)(bđt cauchy schawarz dạng engel)
dấu = xảy ra khi \(\frac{a}{a+1}=\frac{b}{b+1}\)
\(\frac{\left(a+b\right)^2}{a+b+2}=\frac{\left(a+b\right)^2-4+4}{a+b+2}=\frac{\left(a+b-2\right)\left(a+b+2\right)+4}{a+b+2}=a+b-2+\frac{4}{a+b+2}\)
\(=a+b+2+\frac{4}{a+b+2}-4>=2\sqrt{\frac{\left(a+b+2\right)4}{a+b+2}}-4=2\cdot2-4=4-4=0\)(bđt cosi)
dáu = xảy ra khi \(a+b+2=\frac{4}{a+b+2}\Rightarrow\left(a+b+2\right)^2=4\Rightarrow a+b+2=2\Rightarrow a+b=0\)\(\Rightarrow A>=\frac{\left(a+b\right)^2}{a+b+2}>=0\Rightarrow\)min A là 0
vậy min A là 0 khi \(\frac{a}{a+1}=\frac{b}{b+1};a+b=0\)