K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Có : a^2+b^2 >= 2ab

Biểu thức trên = (a^2+b^2/4ab+ab/a^2+b^2)+3/4 (a^2+b^2/ab)

>= 2\(\sqrt{\frac{a^2+b^2}{4ab}.\frac{ab}{a^2+b^2}}\)+ 3/4 . 2 = 2.1/2+3/2 = 1+3/2 = 5/2

Dấu "=" xảy ra <=> a=b>0

Vậy GTNN của biểu thức trên = 5/2 <=> a=b > 0 

k mk nha

11 tháng 10 2018

Đặt \(\frac{a^2+b^2}{ab}=x\). Do \(a^2+b^2\ge2ab\). Chia cả hai vế cho ab được \(x\ge2\)

Đưa về dạng tìm GTNN của  \(x+\frac{1}{x}\) với \(x\ge2\) được \(A_{min}=\frac{5}{2}\)

Vậy \(A_{min}=\frac{5}{2}\Leftrightarrow a=b\)

AH
Akai Haruma
Giáo viên
27 tháng 7

Lời gải:

Áp dụng BĐT Cauchy Schwarz và BĐT AM-GM:

$M=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}$

$\geq \frac{(1+1+1+1+1)^2}{2ab+2ab+a^2+ab+b^2+ab+a^2+b^2}=\frac{25}{2a^2+2b^2+6ab}$

$=\frac{25}{2(a^2+b^2+2ab)+2ab}$

$=\frac{25}{2(a+b)^2+2ab}=\frac{25}{2+2ab}\geq \frac{25}{2+2.\frac{(a+b)^2}{4}}=\frac{25}{2+\frac{2}{4}}=10$

Vậy  $M_{\min}=10$. Giá trị này đạt tại $a=b=\frac{1}{2}$

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

\(\left(a+b+c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge0\)

\(\Leftrightarrow1+2\left(ab+bc+ac\right)\ge0\)

\(\Leftrightarrow ab+bc+ac\ge\frac{1}{2}\)

\(\left(ab+bc+ac\right)^2\ge\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(abbc+bcac+abac\right)\ge\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\ge\frac{1}{4}\)

Đến đây bạn tự làm tiếp nha

27 tháng 12 2017

ta có A=\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}+\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}=\frac{a^2+b^2+c^2}{abc}+\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}\)

mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow A\ge\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}+...\)

Áp dụng bđt co si ta có , \(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{1}{\sqrt{2}}\)

tương tự mấy cái kia rồi + vào thì A>=...

25 tháng 4 2019

Đầu tiên,ta chứng minh BĐT phụ \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\frac{\left(x+y\right)^2-4xy}{2}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng).Dấu "=" xảy ra khi x = y.

Và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Áp dụng BĐT AM-GM(Cô si),ta có; \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\left(x+y\right)}{2}}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi x = y

\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}\ge4+\frac{1}{\frac{1}{2}}=6\)

Dấu "=" xảy ra khi a = b và a + b = 1 tức là a=b=1/2

Vậy Min P = 6 khi a = b = 1/2 

7 tháng 9 2018

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}+\frac{1}{2ab+2bc+2ca}\)+2ca

Do a,b,c dương nên ADBĐT Cauchy ta được:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}\ge\frac{4}{(a+b+c)^2}=4\)

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow2ab+2bc+2ca\le\frac{2}{3}\)\(\Rightarrow\frac{1}{2ab+2bc+2ca}\ge\frac{3}{2}\)

Suy ra P\(\ge4+\frac{3}{2}=\frac{11}{2}\)

Dấu = khi a=b=c=\(\frac{1}{3}\)