Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+b^2+c^2\ge3abc\)
Suy ra: \(1\ge abc\)
Mà \(a+b+c\ge3\sqrt{abc}\ge3\)
Suy ra: \(2\left(a+b+c\right)\ge6\)
Suy ra: \(VT+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge VT+\frac{1}{a+b+c}\ge VT+\frac{1}{3}=6+\frac{1}{3}=6\frac{1}{3}\)
Vậy .........
UCT -->Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2}{2}+\frac{5}{2}\) với \(0\le a^2;b^2;c^2\le3\)
Tương tự + lại là xog
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)
=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)
=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)
=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)
Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)
=> (1) đúng
=> BĐTđược chứng minh
b)Đặt \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).
\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).
Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).
Chứng minh tương tự, ta được:
\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).
\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).
\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).
Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).
\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).
\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).
\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(A\ge\frac{15}{2}\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).
Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).
Áp dụng Cauchy, ta có:
\(a^4+b^2\ge2\sqrt{a^4b^2}=2a^2b\)
\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}\le\frac{1}{2a^2b+2ab^2}\)
Tượng tự:
\(\frac{1}{b^4+a^2+2a^2b}\le\frac{1}{2a^2b+2ab^2}\)
\(\Rightarrow A\le\frac{2}{2ab\left(a+b\right)}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}=2\)\(\Leftrightarrow\frac{a+b}{ab}=2\Rightarrow a+b=2ab\)
\(\Rightarrow A\le\frac{2}{\left(a+b\right)^2}\)
Áp dụng Schwarzt: \(2=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge a+b\ge2\Rightarrow\left(a+b\right)^2\ge4\)
\(\Rightarrow A\le\frac{2}{4}=\frac{1}{2}\)
Dấu = xảy ra khi a=b=1
Áp dụng bđt cosi ta có :
A < = 1/2a^2b+2/ab^2 + 1/2ab^2+2a^2b
= 1/2ab . (1/a+b + 1/a+b) = 1/2ab . 2/a+b = 1/(a+b).(ab)
< = 1/\(\sqrt{ab}.2.ab\) = 1/2\(\sqrt{ab}^3\)
Có : 2 = 1/a + 1/b >= 2\(\sqrt{\frac{1}{ab}}\)
=> \(\sqrt{\frac{1}{ab}}\)< = 1
=> 1/ab < = 1
=> ab > =1
=> A < = 1/2.1 = 1/2
Dấu "=" xảy ra <=> a=b=1
Vậy GTLN của A = 1/2 <=> a=b=1
Tk mk nha
Hiện câu 1 mih chưa giải đc
Đây là đ.a câu 2
\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)
Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)
Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)
Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)
Nhân vế với vế của (1);(2);(3) lại ta được :
\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)
\(\Leftrightarrow abc\ge35.57=1995\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)
We have : \(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)
By Cauchy - Schwarz and AM - GM have :
\(A\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}=\frac{6}{\left(a+b\right)^2}\ge6\)
Then greatest posible of A is 6 when \(a=b=\frac{1}{2}\)
Đặt P=\(4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+5\left(a^2+b^2+c^2\right)\)
\(=\left(5a^2+\frac{4}{a}\right)+\left(5b^2+\frac{4}{b}\right)+\left(5c^2+\frac{4}{c}\right)\)
Lại có:\(a^3+b^3+c^3=3\)và \(a,b,c>0\)\(\Rightarrow0< a,b,c\le\sqrt[3]{3}\)
Ta chứng minh cho:
\(5x^2+\frac{4}{x}\ge2x^3+7\)với \(0< x\le\sqrt[3]{3}\)
\(\Leftrightarrow5x^2+\frac{4}{x}-2x^3-7\ge0\)
\(\Leftrightarrow5x^3+4-2x^4-7x\ge0\)
\(\Leftrightarrow2x^4-5x^3+7x-4\le0\)
\(\Leftrightarrow\left(2x^2-x-4\right)\left(x-1\right)^2\le0\)
Nhận thấy \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\2x^2-x-4< 0\forall0< x\le\sqrt[3]{3}\end{cases}}\)\(\Rightarrow5x^2+\frac{4}{x}\ge2x^3+7\)\(\left(1\right)\)
Áp dụng (1).Ta có:
\(P\ge2a^3+7+2b^3+7+2c^3+7\) với \(0< a,b,c\le\sqrt[3]{3}\)
\(\Leftrightarrow P\ge2\left(a^2+b^2+c^2\right)+21\)
\(\Leftrightarrow P\ge27\) Do:\(a^3+b^3+c^3=3\)\(\left(đpcm\right)\)
Dấu = xảy ra khi:
\(a=b=c=1\)
Sửa lại nha\(\frac{19}{b}\)
thay vào \(\frac{1}{a^2+b^2}\)