\(ab+\frac{1}{ab}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

We have : \(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)

By Cauchy - Schwarz and AM - GM have :

\(A\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}=\frac{6}{\left(a+b\right)^2}\ge6\)

Then greatest posible of A is 6 when \(a=b=\frac{1}{2}\)

16 tháng 10 2020

Ta có: \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\Rightarrow8a^4+a^2b^2+4=16a^2\Rightarrow a^2b^2=-8a^4+16a^2-4=-8\left(a^4-2a^2+1\right)+4=-8\left(a^2-1\right)^2+4\le4\)\(\Rightarrow\left|ab\right|\le2\Rightarrow-2\le ab\le2\)

Vậy MaxS = 2023 khi ab = 2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;-2\right);\left(1;2\right)\right\}\)

MinS = 2019 khi ab = -2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;2\right);\left(1;-2\right)\right\}\)

25 tháng 4 2019

Đầu tiên,ta chứng minh BĐT phụ \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\frac{\left(x+y\right)^2-4xy}{2}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng).Dấu "=" xảy ra khi x = y.

Và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Áp dụng BĐT AM-GM(Cô si),ta có; \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\left(x+y\right)}{2}}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi x = y

\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}\ge4+\frac{1}{\frac{1}{2}}=6\)

Dấu "=" xảy ra khi a = b và a + b = 1 tức là a=b=1/2

Vậy Min P = 6 khi a = b = 1/2 

29 tháng 4 2018

\(A=\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)2}{2}}\ge4+2=6\)

"=" khi \(a=b=\frac{1}{2}\)

18 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự cho 2 BĐT còn lại ta có: 

\(\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right);\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có: 

\(P\le\frac{1}{4}\left[\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)\right]\)

\(=\frac{1}{4}\left[\frac{a\left(b+c\right)}{b+c}+\frac{b\left(a+c\right)}{a+c}+\frac{c\left(a+b\right)}{a+b}\right]\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\cdot1=\frac{1}{4}\left(a+b+c=1\right)\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

18 tháng 4 2017

giúp đỡ nặng quá

8 tháng 7 2016

Sửa lại nha\(\frac{19}{b}\)

8 tháng 7 2016

thay vào \(\frac{1}{a^2+b^2}\)

3 tháng 1 2018

(cách này ngắn hơn nè pham trung thanh) Vì a;b;c vai trò như nhau

Giả sử \(c\le a;b\Rightarrow P\le\frac{1}{4-c^2}+\frac{1}{4-c^2}+\frac{1}{4-c^2}=\frac{3}{4-c^2}\left(1\right)\)

\(c\le a;b\Rightarrow c^4\le a^4;b^4\)

Mà \(a^4+b^4+c^4=3\) 

\(\Rightarrow3\ge c^4+c^4+c^4=3c^4\)

\(\Rightarrow c^4\le1\Leftrightarrow c^2\le1\) 

\(\Rightarrow4-c^2\ge3\Rightarrow\frac{3}{4-c^2}\le1\left(2\right)\)

từ (1) và (2) \(\Rightarrow P\le1\)

Dấu "=" xảy ra khi a=b=c=1

2 tháng 1 2018

Ta có 2A=\(\frac{2}{4-ab}+\frac{2}{4-bc}+\frac{2}{4-ca}=1+1+1-\frac{2-ab}{4-ab}-\frac{2-bc}{4-bc}-\frac{2-ca}{4-ca}\)

   =3-(..)

Mà \(\frac{2-ab}{4-ab}=\frac{\left(2-ab\right)\left(2+ab\right)}{\left(2+ab\right)\left(4-ab\right)}=\frac{4-a^2b^2}{8+2ab-a^2b^2}\)

Mà \(3=a^4+b^4+c^4\ge a^4+b^4\ge2a^2b^2\Rightarrow a^2b^2\le\frac{a^4+b^4}{2}\)

Mà \(8+2ab-a^2b^2=9-\left(ab-1\right)^1\le9\)

=>\(\frac{2-ab}{4-ab}\ge\frac{4-\frac{a^4+b^4}{2}}{9}=\frac{4}{9}-\frac{a^4+b^4}{18}\)

tương tự thì ..., rồi cộng lại, ta có 

\(\frac{2-ab}{4-ab}+\frac{2-bc}{4-bc}+\frac{2-ca}{4-ca}\ge\frac{4}{3}-\frac{a^4+b^4+c^4}{9}=\frac{4}{3}-\frac{1}{3}=1\)

=>\(2A\le3-1=2\Rightarrow A\le1\)

^_^

28 tháng 5 2018

\(A\ge\frac{9}{a+2+b+2+c+2}+\frac{1}{9abc}\)

\(\Rightarrow A\ge\frac{9}{7}+\frac{1}{9abc}\)

Theo BĐT AM-GM ta có: \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow abc\le\frac{1}{27}\)

\(\Rightarrow\frac{1}{9abc}\ge3\)

Do đó ta có: 

\(A\ge\frac{9}{7}+3=\frac{30}{7}\)

11 tháng 12 2016

Đầu tiên ta chứng minh bổ đề. 

Ta có

\(6=3.\frac{a^2}{3}+2.\frac{b^2}{2}+c^2\)

\(\ge6.\sqrt[6]{\left(\frac{a^2}{3}\right)^3.\left(\frac{b^2}{2}\right)^2.c^2}=6.\sqrt[6]{\frac{a^6b^4c^2}{3^3.2^2}}\)

\(\Rightarrow a^6b^4c^2\le3^3.2^2\)

Ta lại có:

\(P=3.\frac{a}{3bc}+4.\frac{b}{2ca}+5.\frac{c}{ab}\)

\(\ge12.\sqrt[12]{\left(\frac{a}{3bc}\right)^3.\left(\frac{b}{2ca}\right)^4.\left(\frac{c}{ab}\right)^5}\)

\(=\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{a^6b^4c^2}}\)

\(\ge\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{3^3.2^2}}=2\sqrt{6}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=\sqrt{3}\\b=\sqrt{2}\\c=1\end{cases}}\)