Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bị ngược dấu hả ???
Đây nhé , ta sẽ chứng minh \(\frac{a}{b^2}+\frac{b}{a^2}\ge\frac{1}{a}+\frac{1}{b}\) thật vậy
Áp dụng bđt Cô-si cho 2 số dương ta được
\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2}.\frac{1}{a}}=\frac{2}{b}\)
\(\frac{b}{a^2}+\frac{1}{b}\ge\frac{2}{b}\)
Cộng 2 bđt lại ta được \(\frac{a}{b^2}+\frac{b}{a^2}+\frac{1}{a}+\frac{1}{b}\ge2\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{a}{b^2}+\frac{b}{a^2}\ge\frac{1}{a}+\frac{1}{b}\)
Dấu ''=" xảy ra khi a = b
Bài toán quay trở lại với việc c/m \(\frac{16}{a+b}\ge\frac{4}{a}+\frac{4}{b}\)với a,b > 0
Ta có bđt sau \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)(Quen thuộc)
Áp dụng ta được \(\frac{4}{a}+\frac{4}{b}=\frac{2^2}{a}+\frac{2^2}{b}\ge\frac{\left(2+2\right)^2}{a+b}=\frac{16}{a+b}\)
\(\Rightarrow\frac{4}{a}+\frac{4}{b}\ge\frac{16}{a+b}???\) Trái với điều cần c/m
=> Đề sai
\(\frac{a}{b^2}+\frac{b}{a^2}+\frac{16}{a+b}\ge5.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{a^3+b^3}{a^2b^2}+\frac{16}{a+b}\ge\frac{5.\left(a+b\right)}{ab}\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}+\frac{16}{a+b}\ge\frac{5.\left(a+b\right)}{ab}\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{ab}+\frac{16ab}{a+b}\ge5.\left(a+b\right)\)
\(\Leftrightarrow\frac{a^2-ab+b^2}{ab}+\frac{16ab}{\left(a+b\right)^2}\ge5\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}+\frac{16ab}{\left(a+b\right)^2}-1\ge5\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}+\frac{16ab}{\left(a+b\right)^2}\ge6\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}+\frac{16ab}{\left(a+b\right)^2}-2\ge6\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}+\frac{16ab}{\left(a+b\right)^2}\ge8\) (1)
Áp dụng BĐT AM-GM ta có:
\(\frac{\left(a+b\right)^2}{ab}+\frac{16ab}{\left(a+b\right)^2}\ge2.\sqrt{\frac{\left(a+b\right)^2}{ab}.\frac{16ab}{\left(a+b\right)^2}}=2.\sqrt{16}=2.4=8\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{a}{b^2}+\frac{b}{a^2}+\frac{16}{a+b}\ge5.\left(\frac{1}{a}+\frac{1}{b}\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}=\frac{16ab}{\left(a+b\right)^2}\Leftrightarrow\left(a+b\right)^4=\left(4ab\right)^2\Leftrightarrow a^2+2ab+b^2=4ab\Leftrightarrow a^2-2ab+b^2=0\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)
\(T=\sum\frac{a}{1+9b^2}=\sum\frac{a\left(1+9b^2\right)-9ab^2}{1+9b^2}=\sum\left(a-\frac{9ab^2}{1+9b^2}\right)\ge\sum\left(a-\frac{9ab^2}{6b}\right)=\sum\left(a-\frac{3}{2}ab\right)\)
\(T\ge a+b+c-\frac{3}{2}\left(ab+ac+bc\right)\ge a+b+c-\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\)
\(\Rightarrow T_{min}=\frac{1}{2}\) khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT Mincopxki:
\(P\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}+\dfrac{1215}{16\left(a+b+c\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(a+b+c\right)^2\cdot\dfrac{81}{16\left(a+b+c\right)^2}}+\dfrac{1215}{16\cdot\left(\dfrac{3}{2}\right)^2}}\)
\(=\dfrac{3\sqrt{17}}{2}\)
\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)
Cách khác :)
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1+16\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)
\(\Rightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)
Tương tự : \(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c};\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)
Cộng theo vế của 3 bất đẳng thức :
\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge\left(a+b+c\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\sqrt{17}\cdot P\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
Áp dụng bất đẳng thức Cô-si:
Xét \(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)
\(\ge2\sqrt{\frac{16\cdot4a}{a}}+2\sqrt{\frac{16\cdot4b}{b}}+2\sqrt{\frac{16\cdot4c}{c}}-15\left(a+b+c\right)\)
\(=16\cdot3-15\cdot\frac{3}{2}=\frac{51}{2}\)
Ta có : \(\sqrt{17}\cdot P\ge\frac{51}{2}\)
\(\Leftrightarrow P\ge\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
vì a,b dương nên BĐT đã cho tương đương với :
\(\frac{a}{b^2}-\frac{1}{b}+\frac{b}{a^2}-\frac{1}{a}+4\left(\frac{4}{a+b}-\frac{1}{a}-\frac{1}{b}\right)\ge0\)
\(\Leftrightarrow\frac{a-b}{b^2}+\frac{b-a}{a^2}+4.\frac{4ab-\left(a+b\right)^2}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a+b\right)}{a^2b^2}-\frac{4\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+b\right)^2-4ab\right]\ge0\)
\(\Leftrightarrow\left(a-b\right)^4\ge0\)( luôn đúng )
Dấu "=" xảy ra khi a = b
Tuogw tựCâu hỏi của Nue nguyen - Toán lớp 10 | Học trực tuyến
Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)
Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)
BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)
<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)
Áp dụng BĐT Schur ta có:
\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)
Khi đó BĐT
<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)
<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)
<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)
Dấu bằng xảy ra khi a=b=c
Bài 2
Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)
Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)
=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)
Lời giải:
Dùng pp biến đổi tương đương.
Ta có: \(\frac{a}{b^2}+\frac{b}{a^2}+\frac{16}{a+b}\geq 5\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow \left(\frac{a}{b^2}-\frac{1}{b}\right)+\left(\frac{b}{a^2}-\frac{1}{a}\right)+4\left(\frac{4}{a+b}-\frac{1}{a}-\frac{1}{b}\right)\geq 0\)
\(\Leftrightarrow \frac{a-b}{b^2}-\frac{a-b}{a^2}+4\left(\frac{4}{a+b}-\frac{a+b}{ab}\right)\geq 0\)
\(\Leftrightarrow \frac{(a-b)^2(a+b)}{a^2b^2}-\frac{4(a-b)^2}{ab(a+b)}\geq 0\)
\(\Leftrightarrow (a-b)^2\left(\frac{a+b}{a^2b^2}-\frac{4}{ab(a+b)}\right)\geq 0\)
\(\Leftrightarrow \frac{a+b}{a^2b^2}-\frac{4}{ab(a+b)}\geq 0\)
\(\Leftrightarrow \frac{a+b}{ab}-\frac{4}{a+b}\geq 0\Leftrightarrow (a+b)^2-4ab\geq 0\)
\(\Leftrightarrow (a-b)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm.
Dấu bằng xảy ra khi $a=b$
cảm ơn bạn