Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xí trước phần b
Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(=\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)
\(=\frac{bc}{a^2b+ca^2}+\frac{ca}{b^2c+ab^2}+\frac{ab}{c^2a+bc^2}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2bc^2}+\frac{c^2a^2}{ab^2c^2+a^2b^2c}+\frac{a^2b^2}{a^2bc^2+ab^2c^2}\)
\(=\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{bc+ab}+\frac{\left(ab\right)^2}{ca+bc}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Cách làm khác của phần b ngắn gọn hơn:)
Ta có; \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)
\(=\frac{\left(\frac{1}{a}\right)^2}{ab+ca}+\frac{\left(\frac{1}{b}\right)^2}{bc+ab}+\frac{\left(\frac{1}{c}\right)^2}{ca+bc}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(\frac{ab+bc+ca}{abc}\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
Áp dụng bđt Cauchy Schwarz dưới dạng Engel ta có :
\(\frac{\left(a+b\right)^2}{c}+\frac{\left(c+b\right)^2}{a}+\frac{\left(a+c\right)^2}{b}\ge\frac{\left(a+b+c+b+c+a\right)^2}{a+b+c}\)
\(=\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Biến đổi tương đương:
\(4\left(a^3+b^3\right)\ge a^3+3ab\left(a+b\right)+b^3\)
\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) luôn đúng do \(a;b\ge0\)
Dấu "=" xảy ra khi \(a=b\)
Ta có a>0;b>0\(\Leftrightarrow\)\(\left(a+b\right)\left(a-b\right)^2\ge0\)(dấu '=' xảy ra khi a=b)\(\Leftrightarrow a^3+b^3-a^2b-ab^2\ge0\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\Leftrightarrow4a^3+4b^3\ge a^3+3a^2b+3ab^2+b^3\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow8\left(a^3+b^3\right)\ge2\left(a+b\right)^3\Leftrightarrow\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)(đpcm)
\(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
\(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{\left(a+b\right)^3}{8}\)
\(\Leftrightarrow8\left(a^3+b^3\right)\ge2\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(\Leftrightarrow4a^3+4b^3-a^3-3a^2b-3ab^2-b^3\ge0\)
\(\Leftrightarrow3a^3-3a^2b-3ab^2+3b^3\ge0\)
\(\Leftrightarrow a^3-a^2b-ab^2+b^3\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
( Luôn đúng với mọi \(a;b>0\) )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
làm giúp mình vài bài tìm GTNN đc không :>