Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
1) Vì \(a,b>0\)\(\Rightarrow\)\(\sqrt{ab}>0\)
\(\Leftrightarrow\)\(2\sqrt{ab}>0\)
\(\Leftrightarrow\)\(a+b+2\sqrt{ab}>a+b\)
\(\Leftrightarrow\)\(\left(\sqrt{a}+\sqrt{b}\right)^2>a+b\)
\(\Leftrightarrow\)\(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
Vậy \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
1. Ta có: \(\left(\sqrt{a+b}\right)^2=a+b\)
\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)
Vì \(a>0\), \(b>0\)\(\Rightarrow\sqrt{ab}>0\)\(\Rightarrow2\sqrt{ab}>0\)
\(\Rightarrow a+b< a+2\sqrt{ab}+b\)
\(\Rightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\)
mà \(\hept{\begin{cases}\sqrt{a+b}>0\\\sqrt{a}+\sqrt{b}>0\end{cases}}\)\(\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)( đpcm )
b) Ta sẽ chứng minh bằng biến đổi tương đương :)
Ta có : \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
\(\Leftrightarrow a+b-2\sqrt{ab}< a-b\)
\(\Leftrightarrow2b-2\sqrt{ab}< 0\)
\(\Leftrightarrow2\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\) (1)
Vì a>b nên \(b-a< 0\Leftrightarrow\left(\sqrt{b}-\sqrt{a}\right)\left(\sqrt{b}+\sqrt{a}\right)< 0\Leftrightarrow\sqrt{b}-\sqrt{a}< 0\) (vì \(\sqrt{a}+\sqrt{b}>0\))
Lại có \(\sqrt{b}>0\) \(\Rightarrow2\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\) đúng.
Vì bđt cuối đúng nên bđt ban đầu được chứng minh
\(\sqrt{25-16}=\sqrt{9}=3\)
\(\sqrt{25}-\sqrt{16}=5-4=1\)
\(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
a) HD: Thực hiện phép khai căn rồi so sánh kết quả.
Trả lời: > √25 - √16;.
b) HD: Ta có thể chứng minh rằng √a < + √b.
Nhưng điều này suy ra từ kết quả bài tập 26.b) SGK nếu lưu ý rằng
√a = .
a) Ta có:
\(\sqrt{25-16}=\sqrt{9}=3\);
\(\sqrt{25}-\sqrt{16}=5-4=1\).
Vì 1 < 3 nên \(\sqrt{25}-\sqrt{16}< \sqrt{25-16}\).
b) Ta có:
\(\sqrt{a}=\sqrt{a-b+b}=\sqrt{(a-b)+b}\)
mà ta đã biết:
\(\sqrt{(a-b)+b}< \sqrt{a-b}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{a}< \sqrt{a-b}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
Vậy \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\).
a) Tính √25 + √9 rồi so sánh kết quả với .
Trả lời: < √25 + √9.
b) Ta có: = a + b và
= + 2√a.√b +
= a + b + 2√a.√b.
Vì a > 0, b > 0 nên √a.√b > 0.
Do đó < √a + √b
a) Tính √25 + √9 rồi so sánh kết quả với .
Trả lời: < √25 + √9.
b) Ta có: = a + b và
= + 2√a.√b +
= a + b + 2√a.√b.
Vì a > 0, b > 0 nên √a.√b > 0.
Do đó < √a + √b
Đặt A=\(\sqrt{a+b}\) và B=\(\sqrt{a}+\sqrt{b}\)
Bình phương 2 vế:
A2=a+b
B2=a+\(2\sqrt{a.b}\) +b
Mà a,b>0=>a.b>0
=>2.\(\sqrt{ab}\)>0
=>A2<B2
Do A,B>0 =>A<B.(đpcm)