Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{a}{5}=\dfrac{b}{4}\Rightarrow\dfrac{a^2}{25}=\dfrac{b^2}{16}\)
Áp dụng tính chất DTSBN :
\(\dfrac{a^2}{25}=\dfrac{b^2}{16}=\dfrac{a^2-b^2}{25-16}=\dfrac{1}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{1}{9}\cdot25=\dfrac{25}{9}\\b^2=\dfrac{1}{9}\cdot16=\dfrac{16}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3};b=\dfrac{4}{3}\\a=\dfrac{-5}{3};b=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left(a;b\right)\in\left\{\left(\dfrac{5}{3};\dfrac{4}{3}\right);\left(-\dfrac{5}{3};-\dfrac{4}{3}\right)\right\}\)
b) \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
Áp dụng tính chất DTSBN :
\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=4.4=16\\b^2=4.9=36\\c^2=4,16=64\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=4;=6;c=8\\a=-4;b=-6;c=-8\end{matrix}\right.\)
Vậy (a;b;c) \(\in\left\{\left(4;6;8\right);\left(-4;-6;-8\right)\right\}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\)\(\left(k\ne0\right)\)
=> x=2k , y =3k
x.y=54 => 2k.3k=54 => 6k^2=54
=> k=\(+-3\)
=> (x,y)=(6,9) = (-6,-9)
Bài giải
a/b = 2/3 => a2/b2 = 2.2/3.3 = 4/9
a2 + b2 = 208
a2 = 208 : (4 + 9).4
a2 = 208 : 13.4
a2 = 16.4
a2 = 64
=> a = 8
=> b = 8 : 2/3 = 12
Ta có \(\frac{a}{b}=\frac{2}{3}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{2}{3}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{4}{9}\)
Theo tính chất của tỉ lệ thức thì ta có \(\frac{a^2}{4}=\frac{b^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{a^2+b^2}{4+9}=\frac{208}{13}=16\)
\(\Rightarrow\hept{\begin{cases}a^2=16.4=64\\b^2=16.9=144\end{cases}}\)
Vì \(\frac{a}{b}=\frac{2}{3}\) nên a, b cùng âm hoặc cùng dương.
Vậy \(\orbr{\begin{cases}a=8,b=12\\a=-8,b=-12\end{cases}}\)
=>a/2=b/3=>a^2/4=b^2/9
áp dụng t/c dãy tỉ số = nhau:
a^2+b^2 / 4+9=208/13=16
=>a=căn của 16.4=8
b=căn của 16.9=12
Đặt \(\frac{a}{b}=\frac{2}{3}=\frac{a}{2}=\frac{b}{3}=k\Rightarrow a=2k;b=3k\)
Thay a = 2k và b = 3k vào biểu thức a2 + b2 = 208
Ta có : 4k2 + 9k2 = 208
\(\Rightarrow k^2.\left(4+9\right)=208\)
\(\Rightarrow k^2.13=208\)
\(\Rightarrow k^2=16\Rightarrow k=\pm4\)
Khi k = 4 => a = 8 ; b = 12
Khi k = -4 => a = -8 ; b = - 12
Ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}\Leftrightarrow a=\dfrac{3b}{5}\)
Khi đó:
\(b^2-a^2=36\Leftrightarrow b^2-\dfrac{9b^2}{25}=36\\ \Leftrightarrow\dfrac{16b^2}{25}=36\Leftrightarrow b^2=\dfrac{225}{4}\Leftrightarrow b=\dfrac{\pm15}{2}\)
Với \(b=\dfrac{15}{2}\) suy ra: \(a=\dfrac{3b}{5}=\dfrac{3}{5}.\dfrac{15}{2}=\dfrac{9}{2}\)
Với \(b=\dfrac{-15}{2}\) suy ra: \(a=\dfrac{3b}{5}=\dfrac{3}{5}.\dfrac{-15}{2}=\dfrac{-9}{2}\)
\(b^2hay\)2b vậy