Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
a+b/2b=4a/b
(a+b)*b=8ab
ab+B^2=8ab
(b^2=7ab)
Bạn tự tìm ab tiếp đi ; mình đã cho thêm thông tin là (b^2=7ab).Thông cảm nha vì minh bận quá ko tìm ab được ^^
k mình nha
a) Gọi \(d=ƯCLN\left(n+4;n+3\right)\) (\(d\in N\)*)
\(\Leftrightarrow\left\{{}\begin{matrix}n+4⋮d\\n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N\)*\(;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+4;n+3\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{n+4}{n+3}\) tối giản với mọi \(n\in N\)
b) Gọi \(d=ƯCLN\left(n-1;n-2\right)\) (\(d\in N\)*)
\(\Leftrightarrow\left\{{}\begin{matrix}n-1⋮d\\n-2⋮d\end{matrix}\right.\)
\(\Leftrightarrow-3⋮d\)
Vì \(d\in N\)*; \(-3⋮d\Leftrightarrow d=1;3\)
Phân số này ko tối giản nhé bn! xem lại đề ik!