K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

xem lại đề đi

8 tháng 1 2017

đề sai vì a,b thuộc N* nha bạn

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

28 tháng 8 2016

/hoi-dap/question/77727.html

24 tháng 8 2016

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\left(1\right)\)

Cộng 2 vế của (1) với ab

ad+ab<bc+ab

a(b+d)<b(a+c) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(2\right)\)

Cộng 2 vế của (1) với cd: ad+cd<bc+cd

d(a+c)<c(b+d) \(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(3\right)\)

Từ (2) và (3) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Đpcm

b)Theo phần a có:

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy  \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

 

30 tháng 8 2016

a) Giả sử: \(\frac{a}{b}< \frac{a+c}{b+d}\)        (1)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\) 

\(\Rightarrow ab+ad< ba+bc\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}< \frac{c}{d}\) )

Vậy (1) là đúng.    (3)

Giả sử: \(\frac{a+c}{b+d}< \frac{c}{d}\)  (2)

\(\Rightarrow\left(a+c\right).d< \left(b+d\right).c\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}=\frac{c}{d}\) )

Vậy (2) đúng.  (4)

Từ (3) và (4) suy ra:

\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

b) \(\frac{-1}{3}< \frac{-2}{7}< \frac{-3}{11},< \frac{-4}{15}< \frac{-1}{4}\)

29 tháng 8 2016

bài này trong SGK  lớp 7 đơn giản mà bạn

                           Giải

Theo đề bài: \(x=\frac{a}{m}\),\(y=\frac{b}{m}\)\(\left(a,b,m\in Z,\ne0\right)\)

Vì \(x< y\) nên \(a< b\)

Ta có: \(x=\frac{2a}{2m}\),\(y=\frac{2b}{2m}\),\(z=\frac{a+b}{2m}\)

a < b nên a + a < a + b hay \(2a< a+b\)                   ( 1 )

a < b nên a + b < b + b hay \(a+b< 2b\)                    ( 2 )

Từ ( 1 ) và ( 2 ) ta có 2a < a + b < 2b.

\(\Rightarrow\)  \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)hay \(x< y< z\)

                     Ủng hộ cho mk nha  

18 tháng 8 2016

Vì x<y

=> \(\frac{a}{m}< \frac{b}{m}\)

=> a<b

x= \(\frac{a}{m};z=\frac{a+b}{2m}\)

=> x=\(\frac{2a}{2m}< \frac{a+b}{2m}\)=z

=> 2a<a+b

=> x<z

mặt khác z<y nên

=> z=\(\frac{a+b}{2m}< \frac{b}{m}\)=y

=>\(\frac{a+b}{2m}< \frac{2b}{2m}\)

=> a+b< 2b

=> z<y

=> x<z<y hay \(\frac{a}{m}< \frac{b}{m}< \frac{a+b}{2m}\)

5 tháng 9 2015

a) a > b mà b \(\in\) N* nên a \(\in\) N*

 \(a>b\Rightarrow an>bn\) (vì a,b,n \(\in\) N*)

\(\Rightarrow ab+an>ab+bn\) hay \(a.\left(b+n\right)>b.\left(a+n\right)\)

Do đó \(\frac{a}{b}>\frac{a+n}{b+n}\). Đề sai. 

17 tháng 5 2017

fhfgjjgjgf

10 tháng 6 2015

a) Ta có : a/b < c/d => ad<bc

Ta ab vào hai vế,ta được:

ad+ab < bc+ab => a(b+d) < b(a+c) => \(\frac{a}{b}\frac{a+c}{b+d}\)                                           (2)

Từ (1) và (2),suy ra : ab < a+c/b+d < c/d

b)Ba số hữu tỉ xen giữa -1/3 và -1/4 là : -15/48 ; -14/48 và -13/48