Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}\) và \(\frac{a+2005}{b+2005}\)
Ta so sánh:
a( b+2005 ) và b( a + 2005)
hay ab + a2005 và ba + b2005
nghĩa là cần so sánh:
a2005 và b2005
Nếu a > b
\(\Rightarrow\) a2005 > b2005
\(\Rightarrow\) a(b +2005) > b(a + 2005)
\(\Rightarrow\frac{a}{b}>\frac{a+2005}{b+2005}\)
Nếu a < b
\(\Rightarrow\) a2005 < b2005
\(\Rightarrow\) a(b +2005) < b(a +2005)
\(\Rightarrow\) \(\frac{a}{b}< \frac{a+2005}{b+2005}\)
Nếu a = b
\(\Rightarrow\frac{a}{b}=1=\frac{a+2005}{b+2005}\)
+ Khi a và b cùng dấu thì a/b dương => a/b > 0
+ Khi a và b khác dấu thù a/b âm => a/b < 0
+ Khi a và b cùng dấu thì a/b dương => a/b > 0 + Khi a và b khác dấu thù a/b âm => a/b < 0
Ta xét hiệu \(\frac{a}{b}-\frac{a+1}{b+1}=\frac{a\left(b+1\right)}{b\left(b+1\right)}-\frac{b\left(a+1\right)}{b\left(b+1\right)}=\frac{ab+a-ba-b}{b\left(b+1\right)}=\frac{a-b}{b\left(b+1\right)}\)
Do b(b+1) > 0 nên ta xét các trường hợp :
\(a< b\Rightarrow a-b< 0\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
\(a=b\Rightarrow a-b=0\Rightarrow\frac{a}{b}=\frac{a+1}{b+1}=1\)
\(a< b\Rightarrow a-b>0\Rightarrow\frac{a}{b}>\frac{a+1}{b+1}\)
Chúc em học tốt :))
ADTCDTSBN
có: \(\frac{a+2001}{b+2001}=\frac{a}{b}=\frac{2001}{2001}=1\)
\(\Rightarrow\frac{a}{b}=\frac{a+2001}{b+2001}\)
ta xét tích
a( b +2001) = ab + 2001a
b(a + 2001) = ab + 2001b
vì b > 0 => b+ 2001>0
+) a>b => ab + 2001a > ab + 2001b
=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
+) a < b => ab + 2001a < ab + 2001b
=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
+) a = b
=> \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Ta có a/b=a.(b+1999)/b.(b+1999)=a.b+a.1999/b.(b+1999)
a+1999/b+1999=(a+1999)b/(b+1999).b=a.b+a.1999/b.(b+1999)
Vay.................