K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

\(=>\left(3a+4b\right)^2=25\)(đề thiếu nhé bạn phải là \(3a+4b=5\)

áp dụng BĐT Bunhiacopxky

\(=>\left(3a+4\right)^2\le\left(3^2+4^2\right)\left(a^2+b^2\right)\)

\(=>25\le25\left(a^2+b^2\right)=>a^2+b^2\ge1\)

dấu"=" xảy ra \(< =>\left\{{}\begin{matrix}a=\dfrac{3}{5}\\b=\dfrac{4}{5}\end{matrix}\right.\)

18 tháng 7 2021

đoạn đầu \(\left(3a+4b\right)^2\le\left(3^2+4^2\right)\left(a^2+b^2\right)\) nhé

3 tháng 3 2019

Áp dụng BĐT svac, ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\left(ĐPCm\right)\)

Dấu = xảy ra <=> a=b=c=1/3

6 tháng 2 2020

Ta có BĐT cần chứng minh 

\(\Leftrightarrow a^6+b^6+ab\left(a^4+b^4\right)\ge a^6+b^6+a^2b^2\left(a^2+b^2\right)\)

\(\Leftrightarrow ab\left(a^4+b^4\right)\ge ab\left(a^3b+ab^3\right)\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

...

6 tháng 2 2020

Tớ vừa sửa đề rồi nha cậu :V

Cậu làm giùm tớ câu tớ vừa sửa nhé !! 

K áp dụng BĐT ạ

NV
3 tháng 9 2020

\(VT=a^4-4ab^3+3b^4=a^4-ab^3-3ab^3+3b^4\)

\(=a\left(a^3-b^3\right)-3b^3\left(a-b\right)=\left(a-b\right)\left(a^3+a^2b+ab^2\right)-3b^3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2-3b^3\right)\)

\(=\left(a-b\right)\left[a^3-b^3+a^2b-b^3+ab^2-b^3\right]\)

\(=\left(a-b\right)\left[\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(ab+b^2\right)+b^2\left(a-b\right)\right]\)

\(=\left(a-b\right)^2\left(a^2+2ab+3b^2\right)\)

\(=\left(a-b\right)^2\left[\left(a+b\right)^2+2b^2\right]\ge0\) ;\(\forall a;b\)

15 tháng 4 2018

Ta có : 

\(a^2+b^2+4\ge ab+2\left(a+b\right)\)

\(\Leftrightarrow\)\(2a^2+2b^2+8\ge2ab+4a+4b\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(a^2-4a+4\right)+\left(b^2-4b+4\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\) ( thoã mãn với mọi a, b ) 

Vậy \(a^2+b^2+4\ge ab+2\left(a+b\right)\)

Sai thì thôi ạk em mới lớp 7 

15 tháng 4 2018

Thêm vào nha chị : 

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b\)

Vậy ...

Chúc chị học tốt ~ 

AH
Akai Haruma
Giáo viên
27 tháng 8

Lời giải:

Từ điều kiện đề bài suy ra:

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0$

$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$

$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$

$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$

$\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0$

$\Rightarrow (a+b)(c+a)(c+b)=0$

$\Rightarrow (1-c)(1-b)(1-a)=0$

$\Rightarrow 1-c=0$ hoặc $1-b=0$ hoặc $1-a=0$

$\Leftrightarrow a=1$ hoặc $b=1$ hoặc $c=1$ (đpcm)

6 tháng 5 2021

Ta có :

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\) ( Bất đẳng thức Bunhiacopski)

Mà lại có \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) (BĐT ....)

\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^2>\frac{1}{8}\cdot1=\frac{1}{8}\)(đpcm)

             KL:.........