K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2024

Lời giải:

Giả sử (𝑎2+𝑏2,𝑎𝑏)>1(a2+b2,ab)>1. Khi đó, gọi 𝑝p là ước nguyên tố lớn nhất của (𝑎2+𝑏2,𝑎𝑏)(a2+b2,ab)

⇒𝑎2+𝑏2⋮𝑝;𝑎𝑏⋮𝑝a2+b2p;abp

Vì 𝑎𝑏⋮𝑝⇒𝑎⋮𝑝abpap hoặc 𝑏⋮𝑝bp

Nếu 𝑎⋮𝑝ap. Kết hợp 𝑎2+𝑏2⋮𝑝⇒𝑏2⋮𝑝a2+b2pb2p

⇒𝑏⋮𝑝bp

⇒𝑝=Ư𝐶(𝑎,𝑏)p=ƯC(a,b) . Mà (𝑎,𝑏)=1(a,b)=1 nên vô lý 

Tương tự nếu 𝑏⋮𝑝bp
Vậy điều giả sử là sai. Tức là (𝑎2+𝑏2,𝑎𝑏)=1(a2+b2,ab)=1

29 tháng 10 2023

a) \(10^a+483=b^2\)   (*)

 Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)

 Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.

 (Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)

b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{101}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{101}-2\)

\(a+2=2^{101}-2+2=2^{201}\)

\(\Rightarrow x=101\)

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{99}-2\)

\(a+2=2^{99}-2+2=2^{99}\)

\(\Rightarrow x=99\)

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

28 tháng 8 2019

Ko ghi đề

\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)

Mấy cái khác cg lm như v (b thì 3b)

Nhớ đúng mk nhá

b: Ta có: \(2^{x+3}+2^x=144\)

\(\Leftrightarrow2^x\cdot9=144\)

\(\Leftrightarrow2^x=16\)

hay x=4

14 tháng 10 2021

a) (x ^ 54)^2 = x                                         

         x^108  = x

Để: x^108  = x 

=> x=0 hoặc x=1

18 tháng 11 2015

  

\(a=\left(44-2\right):\left(5+1\right).5+2=37\)

\(b=44-37=7\)

\(\Rightarrow\frac{a}{2}-\frac{b}{2}=\frac{37}{2}-\frac{7}{2}=\frac{30}{2}=15\)

18 tháng 11 2015

**** CHO CHELSEA ĐI CÁC BẠN

THANKS