Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
\(a=2^1+2^2+2^3+...+2^{100}\)
\(2a=2^2+2^3+2^4+...+2^{101}\)
\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(a=2^{101}-2\)
\(a+2=2^{101}-2+2=2^{201}\)
\(\Rightarrow x=101\)
\(a=2^1+2^2+2^3+...+2^{100}\)
\(2a=2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(2a-a=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(a=2^{99}-2\)
\(a+2=2^{99}-2+2=2^{99}\)
\(\Rightarrow x=99\)
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Ko ghi đề
\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)
Mấy cái khác cg lm như v (b thì 3b)
Nhớ đúng mk nhá
b: Ta có: \(2^{x+3}+2^x=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=16\)
hay x=4
\(a=\left(44-2\right):\left(5+1\right).5+2=37\)
\(b=44-37=7\)
\(\Rightarrow\frac{a}{2}-\frac{b}{2}=\frac{37}{2}-\frac{7}{2}=\frac{30}{2}=15\)
Lời giải:
Giả sử (𝑎2+𝑏2,𝑎𝑏)>1(a2+b2,ab)>1. Khi đó, gọi 𝑝p là ước nguyên tố lớn nhất của (𝑎2+𝑏2,𝑎𝑏)(a2+b2,ab)
⇒𝑎2+𝑏2⋮𝑝;𝑎𝑏⋮𝑝⇒a2+b2⋮p;ab⋮p
Vì 𝑎𝑏⋮𝑝⇒𝑎⋮𝑝ab⋮p⇒a⋮p hoặc 𝑏⋮𝑝b⋮p
Nếu 𝑎⋮𝑝a⋮p. Kết hợp 𝑎2+𝑏2⋮𝑝⇒𝑏2⋮𝑝a2+b2⋮p⇒b2⋮p
⇒𝑏⋮𝑝⇒b⋮p
⇒𝑝=Ư𝐶(𝑎,𝑏)⇒p=ƯC(a,b) . Mà (𝑎,𝑏)=1(a,b)=1 nên vô lý
Tương tự nếu 𝑏⋮𝑝b⋮p
Vậy điều giả sử là sai. Tức là (𝑎2+𝑏2,𝑎𝑏)=1(a2+b2,ab)=1