Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
Theo bài ta có :
\(\left\{{}\begin{matrix}a=5k+2\\b=5k_1+3\end{matrix}\right.\)
\(\Leftrightarrow ab=\left(5k+2\right)\left(5k_1+3\right)=25k.k_1+15k+10k_1+6=5\left(k.k_1+3k+1\right)+1\)
Vì \(5\left(k.k_1+3k+1\right)⋮5\)
\(\Leftrightarrow5\left(k.k_1+3k+1\right)+1\) chia 5 dư 1
\(\Leftrightarrow ab\) chia 5 dư 1
Vì a chia 5 dư 2 => \(a=5m+2\left(m\in N^{ }\right)\)
Vì b chia 5 dư 3 => \(b=5n+3\left(n\in N^{ }\right)\)
Khi đó:
\(ab=\left(5m+2\right)\left(5n+3\right)=25mn+15m+10n+6=25mn+15m+10n+5+1\)
Ta thấy: \(25mn+15m+10n+5⋮5\) =>\(25mn+15m+10n+5+1\)chia 5 dư 1 hay ab chia 5 dư 1Giả sử \(a=\left(c+3\right)\)
\(b=\left(d+2\right)\)
(c,d chia hết cho 5)
\(\Rightarrow a\cdot b=\left(c+3\right)\cdot\left(d+2\right)\)
\(a\cdot b=\left(c+3\right)\cdot d+\left(c+3\right)\cdot2\)
\(a\cdot b=cd+3d+2c+6\)
Vì cd,3d,2c chia hết cho 5 mà 6 không chia hết cho 5
nên \(a\cdot b\) chia 5 dư 1
Theo đề ta có: a = 5k + 2 \(\left(k\in N\right)\)
b = 5h + 3 \(\left(h\in N\right)\)
ab = (5k + 2)(5h + 3) = 25kh + 10h + 15k + 6
= 5(5kh + 2h + 3k + 1) + 1 chia 5 dư 1.
ta có a=5k+3
Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)
a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2
\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)
b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3
\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)
a) Số a có dạng: \(a=3k+2\)
\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)
\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)
Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3
\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1
b) Số a có dạng là: \(a=5k+3\)
\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)
\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)
Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5
\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4
Cho a=5x+3
b=5y+4
ab=(5x+3) (5y+4) = 25xy+20x+15y+12 =5(5xy+4x+3y+2)+2
mà 5(5xy+4x+3y+2) chia hết cho 5
2 chia 5 dư 2
nên 5(5xy+4x+3y+2)=2 chia 5 dư 2
vậy ab chia 5 dư 2