Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a.abc}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}\)
\(=\frac{a}{\sqrt{bc+a^2+ab+ac}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si ngược ta có
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
C/m tương tự được \(\frac{b}{\sqrt{ca\left(1+b^2\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)
\(\frac{c}{\sqrt{ab\left(1+c^2\right)}}\le\frac{1}{2}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng 3 vế của các bđt trên lại ta được
\(A\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{a+c}+\frac{c}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=abc\\a=b=c\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=a^3\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3-3a=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\left(a^2-3\right)=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow a=b=c=\sqrt{3}\left(a,b,c>0\right)\)
Vậy \(A_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\sqrt{3}\)
Ta có: \(\left(a^3+b^3\right)\left(a+b\right)-ab\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\frac{\left(a^3+b^3\right)\left(a+b\right)}{ab}=\left(1-a\right)\left(1-b\right)\) \((*)\)
\(+)\frac{\left(a^3+b^3\right)\left(a+b\right)}{ab}=\left(\frac{a^2}{b}+\frac{b^2}{a}\right)\left(a+b\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\left(1\right)\)
\(+)\left(1-a\right)\left(1-b\right)=1-\left(a+b\right)+ab\le1-2\sqrt{ab}+ab\left(2\right)\)
Từ: \((1)(2)(*)\) ta được:
\(4ab\le1-2\sqrt{ab}+ab\Leftrightarrow3ab+2\sqrt{ab}-1\le0\)
\(\Rightarrow0< ab\le\frac{1}{9}\)
Từ trên ta suy ra được \(Max_P=\frac{1}{9}\)
Áp dụng Bất Đẳng Thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)ta có
\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)
Ta có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)
Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)
\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)
Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)
Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)
Vì a,b,c>0 nên 0<abc\(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)
Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)
\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)
Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)
\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)
Dấu "=" xảy ra khi a=b=c=1
Ta có : 2(a2 + b2 ) - ( a + b) 2 -a2 -2ab + b2 =( a-b)2 \(\ge0\)
=> 2(a2 + b2 ) \(\ge\left(a+b\right)^2\)
tương tự : 2(b2 +c2 ) \(\ge\)( b + c)2
2 (c2 + a2) \(\ge\)( c + a)2
=> P \(\le\frac{c}{a+b+1}+\frac{a}{b+c+1}+\frac{b}{c+a+1}\)
\(\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}\)( do a ,b, c \(\le1\))
= \(\frac{a+b+c}{a+b+c}=1\)
Vậy Max P = 1 <=> a = b = c =1
\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\frac{a}{bc\left(a+1\right)}=\frac{\frac{1}{x}}{\frac{1}{y}\cdot\frac{1}{z}\left(\frac{1}{x}+1\right)}=\frac{xyz}{x\left(x+1\right)}=\frac{yz}{x+1}\)
Tươn tự rồi cộng vế theo vế:
\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{\left(x+y\right)^2}{4\left(z+1\right)}+\frac{\left(y+z\right)^2}{4\left(x+1\right)}+\frac{\left(z+x\right)^2}{4\left(y+1\right)}\)
Đặt \(x+y=p;y+z=q;z+x=r\Rightarrow p+q+r=2\)
\(A\le\Sigma\frac{\left(x+y\right)^2}{4\left(z+1\right)}=\Sigma\frac{\left(x+y\right)^2}{4\left[\left(z+y\right)+\left(z+x\right)\right]}=\frac{p^2}{4\left(q+r\right)}+\frac{r^2}{4\left(p+q\right)}+\frac{q^2}{4\left(p+r\right)}\)
Sau khi đổi biến,cô si thì em ra thế này.Ai đó giúp em với :)
1.
Áp dụng hệ quả cô si:
\(\left(a^2+b^2+c^2\right)^{1000}\le3^{999}\left(a^{2000}+b^{2000}+c^{2000}\right)=3^{1000}\)
=>\(a^2+b^2+c^2\le3\)Dấu = khi a=b=c=1
không biết đúng hay sai đâu
Ta có \(\frac{1}{a+b+1}=\left(1-\frac{1}{b+c+1}\right)+\left(1-\frac{1}{a+c+1}\right)=\frac{b+c}{b+c+1}+\frac{a+c}{a+c+1}\)
\(\ge2\sqrt{\frac{\left(b+c\right)\left(a+c\right)}{\left(b+c+1\right)\left(a+c+1\right)}}\)
Tương tự \(\frac{1}{b+c+1}\ge2\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b+1\right)\left(a+c+1\right)}}\)
\(\frac{1}{a+c+1}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)
Nhân 3 bđt trên ta có:
\(\frac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\ge\frac{8\left(a+b\right)\left(b+c\right)\left(a+c\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\)
=> \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\le\frac{1}{8}\)
MaxA=1/8 khi a=b=c=1/4
Không mất tính tổng quát, giả sử \(a\le b\). Ta có:
\(A=\frac{a\left(a-b\right)+\left(b+1\right)\left(b-1\right)}{\left(a+1\right)\left(b+1\right)}+3\le3\)
Đẳng thức xảy ra khi \(\left(a;b\right)=\left\{\left(0;1\right),\left(1;0\right),\left(1;1\right)\right\}\)
Vậy ..
P/s; Nếu không muốn giả sử thì có thể xét hai trường hợp. Cách làm tương tự. Mà em không chắc đâu:v