Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
\(a^2+b^2-2ab=13-2.6=1=\left(a-b\right)^2\)
\(\Rightarrow\orbr{\begin{cases}a-b=1\\a-b=-1\end{cases}}\)
\(A=a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
Với \(a-b=1\)
\(\Rightarrow A=1.\left(13+6\right)=19\)
Với \(a-b=-1\)
\(\Rightarrow A=-1\left(13+6\right)=-19\)
Vậy \(\orbr{\begin{cases}A=19\\A=-19\end{cases}}\)
b ) \(a^2+b^2+2ab=13+2.6=25=\left(a+b\right)^2\)
\(\Rightarrow\orbr{\begin{cases}a+b=5\\a+b=-5\end{cases}}\)
\(B=a^2-b^2=\left(a-b\right)\left(a+b\right)\)
Với \(a-b=1;a+b=5\Rightarrow B=1.5=5\)
Với \(a-b=1;a+b=-5\Rightarrow B=1.-5=-5\)
Tương tự với \(\hept{\begin{cases}a-b=-1;a+b=-5\\a-b=-1;a+b=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}B=5\\B=-5\end{cases}}\)
Vậy ...
Chúc bạn học tốt !!!
Làm lại :
a ) Do \(a>b>0\)
\(\Rightarrow a-b>0\)
\(a^2+b^2-2ab=13-2.6=1=\left(a-b\right)^2\)
\(\Rightarrow a-b=1\)
\(A=a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow A=1.\left(13+6\right)=19\)
Vậy \(A=19\)
b ) \(B=a^2-b^2=\left(a-b\right)\left(a+b\right)=1\left(a+b\right)=a+b\)
Do \(a>b>0\Rightarrow a+b>0\)
\(a^2+b^2+2ab=13+2.6=25=\left(a+b\right)^2\)
\(\Rightarrow a+b=5\)
Mà \(B=a+b\)
\(\Rightarrow B=5\)
Vậy \(B=5\)
Ta có: P = (a^2+b^2+c^2-ab-bc-ca)/(a^2-c^2-2ab+2bc)
=1/2.(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)/(a^2 - 2ab + b^2 - b^2 +2bc - c^2)
=1/2.[(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)]/[(a-b)^2-(b^2-2bc+c^2)]
=1/2.[(a-b)^2 + (b-c)^2 + (a-c)^2]/[(a-b)^2 - (b-c)^2
Lại có: a – b = 7; b – c = 3 ó a – b + b – c = 7 + 3 ó a – c = 10
Thay a - b = 7 ; b – c = 3; a - c = 10 vào P, ta được:
P = 1/2 .(7^2 + 3^2 + 10^2)/(7^2 – 3^2)
= 1/2.(49 + 9 + 100)/(49 – 9)
= 1/2.158/40
= 158/80
= 79/40
# Chúc bạn học tốt!
\(a-b=7;b-c=3\text{ nên: }\left(a-b\right)+\left(b-c\right)=a-c=10\)
\(\text{tử P}=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=\frac{1}{2}\left(3^2+7^2+10^2\right)=\frac{1}{2}.158=79\)
\(a^2-c^2-2ab-2bc=\left(a+c\right)\left(a-c\right)-2b\left(a+c\right)=\left(a+c\right)\left(a-c-2b\right)\)
bạn ktra lại đề :)
Ta có :
\(a^2+b^2+\left(a+b\right)^2=a^2+b^2+\left(a^2+b^2+2ab\right)\)
\(=2\left(a^2+b^2+ab\right)=2.7=14\)
\(a^4+b^4+\left(a+b\right)^4=a^4+b^4+a^4+C_4^1a^3b+C_4^2a^2b^2+C_4^3ab^3+b^4\)
\(=2a^4+2b^4+4a^3b+6a^2b^2+4ab^3\)
\(=2\left(a^4+b^4+3a^2b^2+2ab^3+2a^3b\right)\)
\(=2\left[\left(a^2\right)^2+\left(b^2\right)^2+\left(ab\right)^2+2a^2b^2+2\left(ab\right)b^2+2\left(ab\right)a^2\right]\)
\(=2.\left(a^2+b^2+ab\right)^2=2.7^2=98\)
\(\Rightarrow M=\frac{a^2+b^2+\left(a+b\right)^2}{a^4+b^4+\left(a+b\right)^4}=\frac{14}{98}=\frac{1}{7}\)
Vậy ...
Ta có:\(a+b=2\)\(\Rightarrow a=2-b\)
Có:\(a.b=-2\)
\(\Rightarrow\left(2-b\right).b=-2\)
\(\Rightarrow2b-b^2=-2\)
\(\Rightarrow2b-b^2+2=0\)
\(\Rightarrow b^2-2b-2=0\)
\(\Rightarrow b^2-2b+1-3=0\)
\(\Rightarrow b^2-2b+1=3\)
\(\Rightarrow\left(b-1\right)^2=3\)
\(\Rightarrow\orbr{\begin{cases}b-1=\sqrt{3}\\b-1=-\sqrt{3}\end{cases}\Rightarrow\orbr{\begin{cases}b=\sqrt{3}+1\\b=-\sqrt{3}+1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}a=2-b=2-\left(\sqrt{3}+1\right)=1-\sqrt{3}\\a=2-b=2-\left(-\sqrt{3}+1\right)=1+\sqrt{3}\end{cases}}\)
Vậy \(\left(a;b\right)=\orbr{\begin{cases}\left(1-\sqrt{3};1+\sqrt{3}\right)\\\left(1+\sqrt{3};1-\sqrt{3}\right)\end{cases}}\)