Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v
Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities
Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.
Bài 3: Tí check đề cái đã.
Lời giải:
Vì : \(\left(3a+6\right)^2\ge0\) với mọi a
\(\left|\frac{1}{4}b-10\right|\ge0\)với mọi b
\(\left|c+3a\right|\ge0\)với mọi a; c
=> \(\left(3a+6\right)^2+\left|\frac{1}{4}b-10\right|+\left|c+3a\right|\ge0\)với mọi a; b ; c
=> \(\left(3a+6\right)^2+\left|\frac{1}{4}b-10\right|+\left|c+3a\right|=0\)
<=> \(\hept{\begin{cases}\left(3a+6\right)^2=0\\\left|\frac{1}{4}b-10\right|=0\\\left|c+3a\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}3a+6=0\\\frac{1}{4}b-10=0\\c+3a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=40\\c=6\end{cases}}\)
Kết luận: Vậy a = -2 ; b= 40 ; c= 6.
Vì \(\left(3a+6\right)^2\ge0,\forall a\)
\(\left|\frac{1}{4}b-10\right|\ge0,\forall b\)
\(\left|c+3a\right|\ge0,\forall c\)
\(\Rightarrow\left(3a+6\right)^2+\left|\frac{1}{4}b-10\right|+\left|c+3a\right|\ge0,\forall a,b,c\)
Dấu = xảy ra khi và chỉ khi
\(\Rightarrow\left(3a+6\right)^2+\left|\frac{1}{4}b-10\right|+\left|c+3a\right|=0\)
\(\hept{\begin{cases}\left(3a+6\right)^2=0\\\left|\frac{1}{4}b-10\right|=0\\\left|c+3a\right|=0\end{cases}\Rightarrow\hept{\begin{cases}a=-2\\b=40\\c=6\end{cases}}}\)
\(\text{Vậy }\hept{\begin{cases}a=-2\\b=40\\c=6\end{cases}}\)
Lời giải:
Ta có:
\((a^2+ab-3a-b+2)(b^2+ab-a-b)\)
\(=[a(a+b-2)-a-b+2][b(b+a)-(a+b)]\)
\(=[a(a+b-2)-(a+b-2)][b(b+a)-(a+b)]\)
\(=(a+b-2)(a-1)(b+a)(b-1)\)
Vì \(0\leq a,b\leq \Rightarrow \left\{\begin{matrix} a+b-2\leq 0\\ a-1\leq 0\\ b+a\geq 0\\ b-1\leq 0\end{matrix}\right.\)
\(\Rightarrow (a^2+ab-3a-b+2)(b^2+ab-a-b)=(a+b-2)(a-1)(b+a)(b-1)\leq 0\)
Ta có đpcm.