≠Trị tuyệt đối của b và ab≠0
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

cmr a=b=c 

19 tháng 6 2019

#)Giải :

\(a^2+b^2+c^2=\left|ab+bc+ca\right|\)

\(\Leftrightarrow2a^2+2b^2+2c^2=\left|2ab+2bc+2ca\right|\)

\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\left(1\right)\)

Mà \(\left(a-b\right)^2\ge0;\left(a-c\right)^2\ge0;\left(b-c\right)^2\ge0\left(2\right)\)

Từ (1) và (2), chứng minh các a,b,c trong ngoặc bằng nhau, từ đó thu được đpcm

17 tháng 12 2016

\(\frac{a}{b}+\frac{b}{a}-ab=\frac{a^2+b^2-a^2b^2}{ab}=\frac{\left(a-b\right)^2+2ab-a^2b^2}{ab}=2\)

6 tháng 6 2017

Mong các bạn giúp mình, trong lúc hỏi mình sẽ luôn suy nghĩ chứ ko hoàn toàn dựa vào các bạn đâu, nếu bời ạn nào ra đáp án vui lòng ghi cả lời giải giúp mình

8 tháng 6 2017

xin lỗi các bạn B2 là chia cho x2+2x dư -3x+2 nhé

4 tháng 2 2021

 \(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)

\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)          

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)

Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)

Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

10 tháng 8 2017

Mn giải giúp e vs huhu

2 tháng 1 2020

\(\frac{2}{ab}-9=\frac{1}{c^2}\)\(\Rightarrow\frac{2}{ab}-\frac{1}{c^2}=9\)

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{2}{ab}-\frac{1}{c^2}\right)=3^2-9\)

\(\Rightarrow\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2.\frac{1}{a}.\frac{1}{b}+2.\frac{1}{b}.\frac{1}{c}+2.\frac{1}{c}.\frac{1}{a}-\frac{2}{ab}+\frac{1}{c^2}=0\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}-\frac{2}{ab}+\frac{1}{c^2}=0\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ac}+\frac{1}{c^2}=0\)

\(\Rightarrow\left(\frac{1}{a^2}+\frac{2}{ac}+\frac{1}{c^2}\right)+\left(\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}\right)=0\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{c}=0\\\frac{1}{b}+\frac{1}{c}=0\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{-1}{c}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)\(\Rightarrow\frac{-1}{c}+\frac{-1}{c}+\frac{1}{c}=3\)\(\Rightarrow\frac{-1}{c}=3\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=3\)\(\Rightarrow c=-\frac{1}{3}\)\(a=b=\frac{1}{3}\)

Lại có: \(P=\left(a+3b+c\right)^{2020}=\left(\frac{1}{3}+3.\frac{1}{3}+\frac{-1}{3}\right)^{2020}=1^{2020}=1\)