\(\left(a+b\right)^4\ge16ab\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

ta có: (a+b)4\(\ge\)16ab(a-b)2

\(\Leftrightarrow\)a+ 4ab+ 4a3b + b4\(\ge\)16ab(a- 2ab + b2)

\(\Leftrightarrow\)a+ 4ab+ 4a3b + b4\(\ge\)16a3b - 32a2b2 + 16ab3

\(\Leftrightarrow\)a4 - 12a3b + 38a2b2 - 12ab3 + b4 \(\ge\)0

\(\Leftrightarrow\)(a2 - 6ab + b2)2 \(\ge\)0 (luôn đúng)
Vậy

\(\left(a+b\right)^4\ge16ab\left(a-b\right)^2\)

\(\Leftrightarrow a^4+4ab^3+6a^2b^2+4a^3b+b^4\ge16ab\left(a^2-2ab+b^2\right)\)

​​\(\Leftrightarrow a^4+4ab^3+6a^2b^2+4a^3b+b^4\ge16a^3b-32a^2b^2+16ab^3\)

\(\Leftrightarrow a^4-12a^3b+38a^2b^2-12ab^3+b^4\ge0\)

\(\Leftrightarrow\left(a^2\right)^2-\left(b^2\right)^2+\left(6ab\right)^2+2a^2b^2-2.6aba^2-2.6abb^2\ge0\) 

\(\Leftrightarrow\left(a^2-6ab+b^2\right)^2\ge0\)( luôn đúng )

Vậy ....

24 tháng 7 2019

tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'< 

Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)

\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)

Tương tự cộng lại ta có đpcm 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

24 tháng 7 2019

ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé 

Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)

\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)

Tương tự cộng lại ra đpcm 

30 tháng 9 2018

a)\(ĐKXĐ:\hept{\begin{cases}x>3\\x\le-1\end{cases}}\)
TH1: \(x-3>0\)
 \(\left(x-3\right)\left(x+1\right)+4.\frac{x-3}{\sqrt{x-3}}\sqrt{x+1}=-3\)

\(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Đặt \(t=\sqrt{\left(x-3\right)\left(x+1\right)}\left(t\ge0\right)\)
Phương trình trở thành:
\(t^2+4t+3=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}}\)(ktm)=> Vô Nghiệm
TH2: \(x-3< 0\)
\(\left(x-3\right)\left(x+1\right)-4.\frac{3-x}{\sqrt{3-x}}\sqrt{-x-1}=-3\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Tự làm tiếp nhé

 

30 tháng 9 2018

b)Nhân chéo chuyển vế rút gọn ta được:
\(x^3-2x^2+3x-2=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2\right)=0\)
\(\Rightarrow x=1\)

3 tháng 1 2016

bài này chắc chỉ mr lazy làm được

3 tháng 1 2016

Câu trả lời cảu em là: 

Từ một cách làm nào đó mà đúng suy ra ĐPCM

(Hi hi, **** cho em nha)

4 tháng 1 2020

hack hay sao

4 tháng 1 2020

chứng minh ngắn là làm tắt