K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Theo bđt cô si ta có : \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\\\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\end{cases}}\)

=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\cdot\sqrt{ab}\cdot\sqrt{\frac{1}{ab}}=4\sqrt{\frac{ab}{ab}}=4\)

=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

=> \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ( Đpcm)

18 tháng 4 2018

Ta có : \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)

\(=\frac{b+a}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng ) ( do a ; b là các số nguyên dương )

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu " = " xảy ra khi :

\(\hept{\begin{cases}a-b=0\\a;b>0\end{cases}}\Leftrightarrow a=b>0\)

Vậy ....

20 tháng 2 2018

a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(p=\frac{a+b+c}{2}\right)\)

Tương tự rồi cộng theo vế:

\(2VT\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=2VP\Leftrightarrow VT\ge VP\)

Dấu "=" khi \(a=b=c\)

b)sai đề

29 tháng 3 2019

a) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

10 tháng 2 2018

a, Có : (a-b)^2 >= 0

<=> a^2+b^2-2ab >= 0

<=> a^2+b^2 >= 2ab

<=> a^2+b^2+2ab >= 4ab

<=> (a+b)^2 >= 4ab

Vì a,b > 0 nên ta chia 2 vế bđt cho (a+b).ab ta được :

a+b/ab >= 4/a+b

<=> 1/a+1/b >= 4/a+b

=> ĐPCM

Dấu "=" xảy ra <=> a=b>0

Tk mk nha

10 tháng 2 2018

Biến đổi tương đương 

<=> (a + b)/ab >/ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế 

<=> (a + b)2 >/ 4ab 

<=> a2 + 2ab + b2 >/ 4ab 

<=> a2 - 2ab + b2 >/ 0 

<=> (a - b)2 >/ 0 luôn đúng a,b > 0 

=>đpcm 

Dấu " = " xảy ra ⇔ a = b

11 tháng 10 2020

Dự đoán bđt xảy ra tại \(a=b=c\)

Đánh giá bđt trên theo bđt Bunhiacopxki dạng phân thức ta được

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+ac+bc\right)}\)

Bài toán hoàn tất khi chỉ ra được \(\frac{\left(a+b+c\right)^2}{3\left(ab+ac+bc\right)}\ge1\)Nhưng đánh giá này chính là\(\left(a+b+c\right)^2\ge3\left(ab+ca+bc\right)\)

Vậy bđt được chứng minh

11 tháng 10 2020

Ta có: \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\)

\(=\frac{a^2}{ab+2ca}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{3\cdot\frac{\left(a+b+c\right)^2}{3}}=1\) (Bunhiacopxki dạng cộng mẫu)

Dấu "=" xảy ra khi: a = b = c

8 tháng 4 2018

Ta có :

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)

\(=\frac{b+a}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+b^2+2ab-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng ) ( do a;b > 0 )

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}a-b=0\\a;b>0\end{cases}}\Rightarrow a=b>0\)

Vậy ...

22 tháng 6 2021

vì \(a+b+c=1\)

\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}+\frac{a}{c}\)

\(=3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

ta có pt:

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\right)\)

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{3}{4}+\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\)

áp dụng bđt cô- si( cauchy) gọi pt là P 

\(P\ge2\sqrt{\frac{ab}{a^2+b^2}\frac{a^2+b^2}{4ab}}+2\sqrt{\frac{bc}{b^2+c^2}\frac{b^2+c^2}{4bc}}+2\sqrt{\frac{ca}{c^2+a^2}\frac{c^2+a^2}{4ca}}+\frac{3}{4}\)

\(P\ge2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}\)

\(P\ge2.\frac{1}{2}+2.\frac{1}{2}+2.\frac{1}{2}+\frac{3}{4}\)

\(P\ge1+1+1+\frac{3}{4}=\frac{15}{4}\)

dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

<=>ĐPCM