\(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

<=> (a2+b2)(a+b)2- 2(a+b)2 +1+ a2b2 -2ab= -4ab <=> (a2+b2)(a2+b2+2ab)- 2(a+b)2+ a2b2+ 2ab+ 1=0

<=> [(a2+b2)2+(a2+b2).2ab+a2b2 ] - 2(a2+b2+2ab)+2ab+1=0 <=> (a2+b2+ab)2- 2(a2+b2+ab)+1=0

<=> (a2+b2+ab-1)2=0 <=> a2+b2+ab-1=0 <=> (a+b)2-(1+ab)=0 <=> (a+b)2 =1+ab => \(\sqrt{1+ab}=\)\(|a+b|\)là số hữu tỉ

15 tháng 8 2020

\(\left(GT\right)\Rightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(1+ab\right)+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\Rightarrow\left(a+b\right)^2-\left(1+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)^2=1+ab\Leftrightarrow\left|a+b\right|=\sqrt{1+ab}\left(a,b\inℚ\right)\)

28 tháng 11 2019

Từ hệ phương trình \(\Rightarrow\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)=2\)

Ta có: \(\sqrt{x-2018}-\sqrt{x-2019}\le\sqrt{\left(x-2018\right)-\left(x-2019\right)}=1\) Dấu = xảy ra khi và chỉ khi x = 2019

Tương tự: \(\sqrt{y-2018}-\sqrt{y-2019}\le1\)

Dấu = xảy ra khi và chỉ khi y = 2019

Nên: \(\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)\le2\)

Dấu = xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)

Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)

10 tháng 6 2016

thay 1 bởi ab+bc+ca

ta có :Q=\(\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)

ta thấy \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

       \(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

        \(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)

=> Q= \(\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)=\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là một số hữu tỉ vì a,c,b là các số hữu tỉ

4 tháng 7 2016

Với ab + ac + bc = 1
Ta có :
a2+1=a2+ab+ac+bc=(a2+ab)+(ac+bc)a2+1=a2+ab+ac+bc=(a2+ab)+(ac+bc)

=a(a+b)+c(a+b)=(a+c)(a+b)=a(a+b)+c(a+b)=(a+c)(a+b)

Tương tự, ta có:
b2+1=(b+a)(b+c)b2+1=(b+a)(b+c) 
c2+1=(c+a)(c+b)c2+1=(c+a)(c+b)

Do đó: 
(a2+1)(b2+1)(c2+1)=(a+c)(a+b)(b+c)(b+a)(c+a)(c+b)(a2+1)(b2+1)(c2+1)=(a+c)(a+b)(b+c)(b+a)(c+a)(c+b)

=(a+b)2(a+c)2(b+c)2=|(a+b)(a+c)(b+c)|=(a+b)2(a+c)2(b+c)2=|(a+b)(a+c)(b+c)|

Do a, b, c là số hữu tỷ, do đó :
|(a+b)(a+c)(b+c)||(a+b)(a+c)(b+c)| là số hữu tỷ. (đpcm)

10 tháng 6 2016

Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)(thay từ giả thiết)

Tương tự : \(b^2+1=\left(b+c\right)\left(b+a\right)\);  \(c^2+1=\left(c+b\right)\left(c+a\right)\)

Suy ra : \(Q=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+b\right)^2.\left(b+c\right)^2.\left(c+a\right)^2}=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\)Vì a,b,c là các số hữu tỉ nên suy ra Q là số hữu tỉ.

10 tháng 6 2016

thay 1 bởi ab+bc+ca

ta có :

Q=\(\sqrt{\left(a^2+ab+bc+Ca\right)\left(b^2+bc+ab+ca\right)\left(c^2+ab+bc+ca\right)}\)

ta thấy : \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

              \(b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)

           \(c^2+ab+bc+ca=\left(a+c\right)\left(b+c\right)\)

=> Q=\(\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)=\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là số hữu tỉ vì a,b,c là các số hữu tỉ

3)

Ta có : \(a^2+1=a^2+ab+bc+ca\)

\(=a.\left(a+b\right)+c.\left(a+b\right)\)

\(=\left(a+b\right)\left(a+c\right)\)

Tương tự ta có : \(b^2+1=\left(b+a\right)\left(b+c\right)\)

\(c^2+1=\left(c+a\right)\left(c+b\right)\)

Khi đó :

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là một số hữu tỉ với a,b,c hữu tỉ.

13 tháng 10 2020

B1: 

\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18\sqrt{2}\left(a^2-2b^2\right)=3\left(a^2-2b^2\right)\)

\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18a^2\sqrt{2}-36b^2\sqrt{2}=3a^2-6b^2\)

\(\Leftrightarrow18a^2\sqrt{2}-36b^2\sqrt{2}-9b\sqrt{2}=3a^2-6b^2-a\)

\(\Leftrightarrow\left(18a^2-36b^2-9b\right)\sqrt{2}=3a^2-6b^2-a\)

Nếu \(18a^2-36b^2-9b\ne0\Rightarrow\sqrt{2}=\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\)

Vì a,b nguyên nên \(\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\in Q\Rightarrow\sqrt{2}\in Q\)=> Vô lý vì \(\sqrt{2}\)là số vô tỉ.

Vậy ta có: \(18a^2-36b^2-9b=0\Rightarrow\hept{\begin{cases}18a^2-36b^2-9b=0\\3a^2-6b^2-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3a^2-6b^2=\frac{3}{2}b\\3a^2-6b^2=a\end{cases}\Leftrightarrow a=\frac{3}{2}b}\)

Thay \(a=\frac{3}{2}b\)vào \(3a^2-6b^2-a=0\)ta có: 

\(3.\frac{9}{4}b^2-6b^2-\frac{3}{2}b=0\Leftrightarrow27b^2-24b^2-6b=0\Leftrightarrow3b\left(b-2\right)=0\)

Ta có: b=0(loại) ; b=2(thoả mãn) . Vậy a=3. KL:...

13 tháng 10 2020

B2: \(GT\Rightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(1+ab\right)+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\Rightarrow\left(a+b\right)^2-\left(1+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)^2=1+ab\Leftrightarrow\left|a+b\right|=\sqrt{1+ab}\in Q\)( vì a,b thuộc Q)

KL:....

6 tháng 9 2016

Vì ab+bc+ca=1

\(\Rightarrow a^2+1\)

\(=a^2+ab+bc+ca\)

\(=\left(a^2+ab\right)+\left(ac+bc\right)\)

\(=a\left(a+b\right)+c\left(a+b\right)\)

\(=\left(a+b\right)\left(a+c\right)\)

Tương tự ta được \(\begin{cases}b^2+1=\left(b+a\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(c+b\right)\end{cases}\)

\(\Rightarrow\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)\left(c+a\right)\left(c+b\right)}\)

\(=\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)

\(=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\)

Mặt khác a;b;c là số hữa tỉ

\(\Rightarrow\begin{cases}a+b\\b+c\\c+a\end{cases}\) là số hữu tỉ

\(\Rightarrow\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\) là số hữu tỉ

=> đpcm

12 tháng 6 2021

Ta có: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)

\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2-2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(c-a\right)\left(a-b\right)}\right)\)

\(=\left(\frac{1}{\left(a-b\right)}+\frac{1}{\left(b-c\right)}+\frac{1}{c-a}\right)^2-2\left(\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)

\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)

=> \(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2}\)

\(=\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)

Vì a,b,c là các số hữu tỉ => \(\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)là một số hữu tỉ

=> A là một số hữu tỉ