Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cosi
\(A=\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge2\sqrt{\frac{a^2}{a+1}+\frac{b^2}{b+1}}\)
\(\Leftrightarrow A\ge\frac{2ab}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)
Đến đây bạn tự xử lí phần dấu "="
Nhật Quỳnh Cô si lỗi rồi kìa -_-
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}\)\(\ge\frac{\left(a+b\right)^2}{a+b+2}=\frac{4}{4}=1\)
Dấu "=" xảy ra tại a=b=1
Vậy..........................
\(A=\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{ab}\)\(\ge\frac{25}{4a+ab}\)\(=\frac{25}{a\left(b+4\right)}\)\(\ge\frac{25}{\frac{1}{4}\left(a+b+4\right)^2}\)\(=1\)
\(A_{min=1}\)\(khi\){ a = 5
b = 1
\(Q=\frac{1}{a^2+b^2}+2012+\frac{1}{ab}+4ab.\)
Ta có \(M=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)
Áp dụng bđt Cauchy ta có
\(M\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}.8ab}-\left(a+b\right)^2=7\)
=> \(Q\ge2012+7=2019\)
Dấu "=" xảy ra khi a=b=\(\frac{1}{2}\)
Vậy......
\(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(4ab+\frac{1}{4ab}\right)+\frac{1}{4ab}+2012\)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\left(x+y\right)^2\ge4xy\),ta có:
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)
\(\left(4ab+\frac{1}{4ab}\right)^2\ge4.4ab\cdot\frac{1}{4ab}=4\Rightarrow4ab+\frac{1}{4ab}\ge2\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\Rightarrow\frac{1}{4ab}\ge1\)
\(\Rightarrow Q\ge4+2+1+2012=2019\)
Dấu "=" xảy ra khi a=b=1/2
\(3a+3b+\dfrac{1}{a+b}=\dfrac{a+b}{25}+\dfrac{1}{a+b}+\dfrac{74\left(a+b\right)}{25}\ge2.\sqrt{\dfrac{a+b}{25}.\dfrac{1}{a+b}}+\dfrac{74}{25}.5=\dfrac{76}{5}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)
Vậy GTNN của biểu thức là \(\dfrac{76}{5}\)
Ta có: 3a + 3b + \(\dfrac{1}{a+b}\) = \(\dfrac{1}{a+b}+\dfrac{a+b}{25}+\dfrac{74}{25}\left(a+b\right)\)
Áp dụng BDT Co-si, ta có:
\(\dfrac{1}{a+b}+\dfrac{a+b}{25}\ge2\sqrt{\dfrac{1}{a+b}.\dfrac{a+b}{25}}\)
=> \(\dfrac{1}{a+b}+\dfrac{a+b}{25}\ge\dfrac{2}{5}\)
Mà \(\dfrac{74}{25}\left(a+b\right)\ge\dfrac{74}{5}\)
=> \(3\left(a+b\right)+\dfrac{1}{a+b}\ge\dfrac{76}{5}\)
Dấu "=" xảy ra <=> \(a=b=\dfrac{5}{2}\)
\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(A=\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\)
\(P=2a+3b+\frac{1}{a}+\frac{4}{b}=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)
\(\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)
Dấu "=" xảy ra <=> \(a=1;\)\(b=2\)
Vậy MIN P = 11 Khi a = 1; b = 2
Bài này là BĐT cosi
\(P=2a+3b+\frac{1}{a}+\frac{4}{b}\)
\(P=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)
\(P\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)
Dấu "=" xảy ra khi a = 1/a <=> a = 1 ; b = 4/b <=> b = 2