Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a-2b}{b}=\frac{a-b+b}{b}=\frac{a}{b}\)là phân số tối giản.
Thế thôi ! Bạn chỉ cần tách tử số là ra luôn !^^
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Ta có: a/b chưa tối giản.Gọi (a;b)=d (d #1)
=>a chia hết cho d;b chia hết cho d
=>2a chia hết cho d; 2d chia hết cho d
=>2a chia hết cho d; (a-2b) chia hết cho d
=>d thuộc ƯC(2a;a-2b)
Mà d#1
=>(2a;a-2b)#1
=>2a/a-2b chưa tối giản (đpcm)