Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C nằm trên đường tròn đường kính AB suy ra tam giác ACB vuông tại C
Xét tam giác ACB vuông tại C có: BC=\(\sqrt{\left(AB^2-AC^2\right)}\) = \(\sqrt{\left(4^2-2,4^2\right)}\) = 3,2
Am là tiếp tuyến (O) suy ra góc MAB= 90 độ
Xét tam giác MAB có góc MAB= 90 độ , đường cao AC
BC.BM=AB2 suy ra BM=\(\frac{AB^2}{BC}\) = 5
Ta có góc ABC = 90 (dây AB chắn nửa đường tròn) nên AC vuông góc BM
Trong tam giác ABM có góc A=90, AC vuông góc BM
\(\Rightarrow\frac{1}{AC^2}=\frac{1}{AM^2}+\frac{1}{AB^2}\)\(\Rightarrow\frac{1}{AM^2}=\frac{1}{2,4^2}-\frac{1}{4^2}\Rightarrow AM=3\)
Dễ chứng minh tam giác ABC vuông tại C.
Áp dụng hệ thức lượng trong tam giác vuông, ta có :
\(\frac{1}{AM^2}+\frac{1}{AB^2}=\frac{1}{AC^2}\)
\(\Rightarrow\frac{1}{AM^2}+\frac{1}{\left(2R\right)^2}=\frac{1}{2.4^2}\)
Giải pt trên tìm được AM=3cm
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
=>\(\widehat{ACB}=90^0\)
Ta có: ΔOAC cân tại O(OA=OC)
mà OH là đường trung tuyến
nên OH\(\perp\)AC và OH là tia phân giác của góc AOC
Ta có: OH\(\perp\)AC(cmt)
AC\(\perp\)CB tại C(Do ΔACB vuông tại C)
Do đó: OH//BC
b:
OH là phân giác của góc AOC
=>\(\widehat{AOH}=\widehat{COH}\)
mà M\(\in\)OH
nên \(\widehat{AOM}=\widehat{COM}\)
Xét ΔOCM và ΔOAM có
OC=OA
\(\widehat{COM}=\widehat{AOM}\)
OM chung
Do đó: ΔOCM=ΔOAM
=>\(\widehat{OCM}=\widehat{OAM}\)
mà \(\widehat{OCM}=90^0\)
nên \(\widehat{OAM}=90^0\)
=>OA\(\perp\)MA tại A
=>MA là tiếp tuyến tại A của (O)
Ta có tam giác ABC nội tiếp (O) có AB là đường kính
=>tam giác ABC vuông tại C
->AC là đường cao của tam giác ABM
=>BC=\(\sqrt{AB^2-AC^2}=3,2cm\)
=>MC=AC2/BC=2,42/3,2=1,8cm
=>AM=\(\sqrt{AC^2+MC^2}=3\)