Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
=>a/2=b/3=>a^2/4=b^2/9
áp dụng t/c dãy tỉ số = nhau:
a^2+b^2 / 4+9=208/13=16
=>a=căn của 16.4=8
b=căn của 16.9=12
Đặt \(\frac{a}{b}=\frac{2}{3}=\frac{a}{2}=\frac{b}{3}=k\Rightarrow a=2k;b=3k\)
Thay a = 2k và b = 3k vào biểu thức a2 + b2 = 208
Ta có : 4k2 + 9k2 = 208
\(\Rightarrow k^2.\left(4+9\right)=208\)
\(\Rightarrow k^2.13=208\)
\(\Rightarrow k^2=16\Rightarrow k=\pm4\)
Khi k = 4 => a = 8 ; b = 12
Khi k = -4 => a = -8 ; b = - 12
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
b = 3 vì mẫu số của hiệu là 15 = 5 x b = 5 x 3 nên a = 4
4/5 - 2/3 = 2/15
\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)
\(\Rightarrow\frac{a.b}{5.b}-\frac{2.5}{b.5}=\frac{2}{15}\)
Tìm b: Vì kết quả có mẫu là \(15\Rightarrow5.b=b.5=15\Rightarrow b=15:5=3\)
Tìm a: \(ab-2.5=2\)thay \(b=3\)ta có: \(a.3-2.5=2\)
\(a.3-10=2\)
\(a="2+10":3=4\)
Vậy : \(a=3;b=4\)