K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

kết quả chắc chắn 100 phần trăm là =1 đó

10 tháng 3 2016

Giá trị nhỏ nhất của biểu thức  \(A_{min}=4\)

20 tháng 2 2016

Các bạn giải thích giùm tớ luôn nhé

10 tháng 3 2016

(a+b)(1/a+1/b)=1+a/b+b/a+1

                    =2+(a^2+b^2)/(a*b)

vì a^2+b^2>0; a*b>0

=>Qmin=2

19 tháng 5 2022

vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a  ∀mọi x    (1)

vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x      (2)

từ 1 và 2 ⇒ a2+b≥ 2a+2b

               ⇒ A≥ 2(a+b)=2

dấu''=' xảy ra khi a=b=1/2

5 tháng 10 2019

Để phương trình có nghiệm thì : 

\(\Delta_x=a^2-\left(2a^2+b^2-5\right)\ge0\)

\(\Leftrightarrow a^2+b^2\le5\)

\(\Leftrightarrow\left(a+b\right)^2\le5+2ab\)

\(\Leftrightarrow ab\ge\frac{\left(a+b\right)^2-5}{2}\)

Ta có :

\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1\)

\(\ge\frac{\left(a+b\right)^2-5}{2}+\left(a+b\right)+1=\frac{1}{2}\left(a+b+1\right)^2-2\ge-2\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
Áp dụng BĐT Cô-si:

$a^2+1\geq 2a$

$b^2+4\geq 4b$

$\Rightarrow a^2+b^2\geq 2a+4b-5$

$\Rightarrow P\geq 2a+4b-5+\frac{1}{a+b}+\frac{1}{b}$

$=\frac{a+b}{9}+\frac{1}{a+b}+(\frac{b}{4}+\frac{1}{b})+\frac{17}{9}a+\frac{131}{36}b-5$

$\geq 2\sqrt{\frac{1}{9}}+2\sqrt{\frac{1}{4}}+\frac{17}{9}a+\frac{131}{36}b-5$

$=\frac{2}{3}+1+\frac{17}{9}a+\frac{131}{36}b-5$

$\geq \frac{2}{3}+1+\frac{17}{9}+\frac{131}{36}.2-5=\frac{35}{6}$

Vậy $P_{\min}=\frac{35}{6}$ khi $a=1; b=2$

dap an bag 4

10 tháng 3 2016

bằng a+b a' bạn 

25 tháng 1 2022

Theo BĐT Cauchy Schwarz 

\(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=9\)

Dấu ''='' xảy ra khi a = b = c = 1/3 

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2

28 tháng 12 2019

a) x2 + 1 ≤ (x - 2)2 ⇔ x2 + 1 ≤ x2 - 4x + 4 ⇔ 4x ≤ 3

⇔ x ≤ 3/4

Vậy: x ≤ 3/4

b) a, b > 0

Ta có: a + b = 1 suy ra: (a + b)2 = 1 ⇒ a2 + 2ab + b2 = 1 (1)

Mặt khác (a - b)2 ≥ 0 với mọi a, b ⇒ a2 - 2ab + b2 ≥ 0 (2)

Cộng (1) và (2) vế theo vế, ta được:

2a2 + 2b2 ≥ 1 ⇒ 2(a2 + b2) ≥ 1 ⇒ a2 + b2 ≥ 1/2