Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 7a+3b⋮23⇒6(7a+3b)⋮237a+3b⋮23⇒6(7a+3b)⋮23
⇒6(7a+3b)+(4a+5b)⋮23⇒6(7a+3b)+(4a+5b)⋮23
⇒46a+23b⋮23⇒23(2a+b)⋮23⇒46a+23b⋮23⇒23(2a+b)⋮23(Đúng)
Vậy 4a+5b⋮23
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
Gọi d là ƯC của 7a+5b và 4a+3b. Ta có:
7a+5b chia hết cho d \(\Rightarrow\)4(7a+5b) chia hết cho d \(\Rightarrow\)28a+20b chia hết cho d
4a+3b chia hết cho d \(\Rightarrow7\left(4a+3b\right)\)chia hết cho d \(\Rightarrow28a+21b\) chia hết cho d
Suy ra: (28a+21b) - (28a+20b) chia hết cho d
\(\Leftrightarrow28a+21b-28a-20b\) chia hết cho d
\(\Leftrightarrow1\) chia hết cho d
\(\Rightarrow\)d = {+1; -1}
Vậy 7a+5b và 4a+3b là 2 số nguyên tố cùng nhau
Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23
16a+20b+7a+3b = 23a+23b chia hết cho 23
mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)