Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: a>b
=>a-b>0
=>|a-b|=a-b
=>a-b<1
=>a<b+1
=>a/b<b+1/b
=>a/b<1+1/b
Vì:b>1
=>1/b<1
=>a/b<1+1
=>a/b<2
Mà: a>b
=>b/a<1
=>a/b+b/a<1+2
=>a/b+b/a<3
Ngược lại với b>a
Xét:a=b
=>a/b+b/a=2
=>a/b+b/a<3
Chắc giờ bạn làm đc rồi nhỉ
Do a,b,c thuộc N mà a,b,c<1
\(\Rightarrow\)a=0,b=0,c=0
Vậy ....
1
a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\)
2
b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)
Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\) và \(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)
1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc
1b ) Như trên
2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)
\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa là.................
1) Nếu a/b>1 thì a/b>b/b<=>a>b
2)Nếu a>b thì a.z>b.z=>a/b>z/z<=>a/b>1
3)Nếu a/b<1 thì a/b<b/b<=>a<b
4)Nếu a<b=>a.z<b.z=>a/b<z/z<=>a/b<1
Ta có: \(\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\)
\(\dfrac{b}{b+c}>\dfrac{b}{a+b+c}\)
\(\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\)(1)
\(\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)
\(\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c}\)
\(\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\)
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\)
(2)
Từ (1), (2) \(\Rightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\left(đpcm\right)\)
Vậy...
Em yêu thích toán vì điều đó.
Và rất có thể cái người đặt câu hỏi cố tình, chứ không phải vô tình.
"có thật 100% luôn. Thầy (cô giáo em lớp 6). cố tình cho đề sai--> phản ứng các học sinh tiếp nhận và giải quyết nó như thế nào?"
cũng không biết là Cô giáo ngụy biện hay thật
....dưới góc độ Toán học Em thấy cô giáo có lý.
p/s: Em không bị cô lừa---> mỗi em được 10 điểm---> và lời giải chưa hết 1 dòng.
@phynit
Ta giả sử : \(\dfrac{a}{b}+\dfrac{b}{a}< 3\) => \(\dfrac{a^2}{ba}+\dfrac{b^2}{ab}< 3=>\dfrac{a^2+b^2}{ab}< \dfrac{3ab}{ab}\)
hay \(a^2+b^2< 3ab\) => \(a^2+b^2+2ab< 3ab+2ab\) => \(\left(a+b\right)^2< 5ab\)
Theo đề /a-b/<1 mà /a-b/ luôn > hoặc = 0 và a,b < 1 nên 0 < hoặc bằng a-b <1
Xét trường hợp a-b=0=> a=b:
\(\left(a+b\right)^2=\left(2a\right)^2=4a^2\)(1)
\(5ab=5aa=5a^2\)(2)
Mà (2)>(1) nên \(\left(a+b\right)^2< 5ab\) (điều giả sử đúng)
Xét trường hợp 0<a-b<1 =>a>b hoặc b>a
còn lại tự mò nhé :)
Bn giải nốt đc k -.-