Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải tắt thôi, k bt có đúng k nữa
\(a\left(a-x\right)^2+b\left(b-x\right)^2\left(1\right)\)
\(=\left(a+b\right)x^2-2x\left(a^2+b^2\right)+a^3+b^3\)
+) \(a+b=0\Rightarrow pt\left(1\right)\)có một nghiệm\(\Rightarrow|a|=|b|\)
+) \(a+b\ne0\)
Xét \(\Delta'=a^4+2a^2b^2+b^4-a^4-ab^3-a^3b-b^4\)
\(=2a^2b^2-ab^3-a^3b=ab\left(a-b\right)^2\)
PT(1) có 1 nghiệm khi và chỉ khi : \(\Delta'=0\Rightarrow a-b=0\Rightarrow|a|=|b|\)
2/ \(a\left(x-a\right)^2+b\left(x-b\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)x^2-2\left(a^2+b^2\right)x+a^3+b^3=0\)
Với a = - b thì x = 0
Với a \(\ne\) - b thì ta có
\(\Delta'=\left(a^2+b^2\right)^2-\left(a+b\right)\left(a^3+b^3\right)=0\)
\(\Leftrightarrow-ab\left(a-b\right)^2=0\)
\(\Leftrightarrow a=b\)
Vậy ta có ĐPCM
b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)
Theo vi et ta có
\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)
Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)
\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)
\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)
\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)
\(=p^2-pq-pq+1+q^2-2+1\)
\(=p^2-2pq+q^2=\left(p-q\right)^2\)
a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)
Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)
\(=m^2+n^2-mn-m-n+1\)
\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)
\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)
Vậy có 1 trong 2 phương trình có nghiệm
a) pt (1) có 2 nghiệm dương phân biệt => \(\hept{\begin{cases}\Delta_1=1-4m>0\\m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\m>0\end{cases}}\Leftrightarrow0< m< \frac{1}{4}\)
pt (2) có 2 nghiệm dương phân biệt => \(\hept{\begin{cases}\Delta_2=1-4m>0\\\frac{1}{m}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\m>0\end{cases}}\Leftrightarrow0< m< \frac{1}{4}\)
=> để 2 pt có 2 nghiệm dương phân biệt thì \(0< m< \frac{1}{4}\)
b) \(x_1x_2x_3+x_2x_3x_4+x_3x_4x_1+x_4x_1x_2=x_1x_2\left(x_3+x_4\right)+x_3x_4\left(x_1+x_2\right)=m.\frac{1}{m}+\frac{1}{m}.1=\frac{1}{m}+1>\frac{1}{\frac{1}{4}}+1=5\)
a(a−x)2+b(b−x)2 (1)
=(a+b)x2−2x(a2+b2)+a3+b3
+) a+b=0⇒pt(1)có một nghiệm⇒|a|=|b|
+) a+b≠0
Xét Δ'=a4+2a2b2+b4−a4−ab3−a3b−b4
=2a2b2−ab3−a3b=ab(a−b)2
PT(1) có 1 nghiệm khi và chỉ khi : Δ'=0⇒a−b=0⇒|a|=|b|
Thực hiện khai triển , PT đã cho tương đương với
\(\left(a+b\right)x^2-2x\left(a^2+b^2\right)+\left(a^3+b^3\right)=0\left(^∗\right)\)
Nếu \(a+b=0\) thì
\(a^2+b^2\ne0\) với mọi a , b \(\ne0\) . PT (*) có nghiệm duy nhất \(x=\frac{a^3+b^3}{2\left(a^2+b^2\right)}\) ( thỏa mãn yêu cầu )
\(a+b=0\Rightarrow a=-b\Rightarrow\left|a\right|=\left|b\right|\left(1\right)\)
Nếu \(a+b\ne0\)
PT (*) là PT bậc 2 ẩn x có nghiệm duy nhất khi mà
\(\Delta'=\left(a^2+b^2\right)^2-\left(a+b\right)\left(a^3+b^3\right)=0\)
\(\Leftrightarrow2a^2b^2-ab^3-a^3b=0\)
\(\Leftrightarrow-ab\left(a-b\right)^2=0\)
Vì \(a,b\ne0\Rightarrow ab\ne0\)
\(\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\Rightarrow\left|a\right|=\left|b\right|\left(2\right)\)
Từ (1) và (2) ta có đpcm
Chúc bạn học tốt !!!