Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy - Schwarz với 2 bộ số \(\left(a,b,c\right)\)và \(\left(1,1,1\right)\)ta có:
\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\).
Dấu \(=\)xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\).
Còn cách khác :3
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1^2}{3}=\frac{1}{3}\)
Đẳng thức xảy ra <=> a = b = c = 1/3
Vậy ta có điều phải chứng minh
Áp dụng BĐT cô si ta có :
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\)
\(\Rightarrow BĐT\)cần \(CM\): \(3>\frac{9}{a+b+c}\Leftrightarrow a+b+c>3\)
Mà a,b,c > 0 => abc > 0
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2=b^2=c^2=1\end{cases}\Leftrightarrow}a=b=c=1\)
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=> a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
TT : ....
\(\frac{a^2}{b+c}+\frac{b+c}{4}+\frac{b^2}{c+a}+\frac{a+c}{4}+\frac{c^2}{a+b}+\frac{a+b}{4}\ge a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge a+b+c-\frac{b+c}{4}-\frac{a+c}{4}-\frac{a+b}{4}=\frac{a+b+c}{2}\)( 1 )
Mà a + b + c > 2 \(\Rightarrow\frac{a+b+c}{2}>1\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>1\)
a) a2 + b2 + c2 ≥ ab + bc + ca
Nhân 2 vào từng vế của bất đẳng thức
<=> 2( a2 + b2 + c2 ) ≥ 2( ab + bc + ca )
<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) ≥ 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )
=> đpcm
Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
b) a2 + b2 + c2 + 3 ≥ 2( a + b + c )
<=> a2 + b2 + c2 + 3 ≥ 2a + 2b + 2c
<=> a2 + b2 + c2 + 3 - 2a - 2b - 2c ≥ 0
<=> ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + ( c2 - 2c + 1 ) ≥ 0
<=> ( a - 1 )2 + ( b - 1 )2 + ( c - 1 )2 ≥ 0 ( đúng )
=> đpcm
Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\Leftrightarrow a=b=c=1\)
abc = 1 => a3b3c3=1
<=> \(a^3+b^3+c^3+2a^3b^3+2b^3c^3+2a^3c^3+3a^3b^3c^3\ge3a^2b+3b^2c+3c^2a+3\)
Áp dụng BĐT cauchy cho 3 số dương ta có :
\(a^3b^3+b^3c^3+a^3c^3\ge3\sqrt[3]{a^6b^6c^6}\) <=> \(a^3b^3+b^3c^3+a^3c^3\ge3\)Dấu = xảy ra khi a=b=c (1)
Tương tự ta có : \(a^3b^3c^3+a^3b^3+a^3\ge3a^2b\)Dấu = xảy ra duy nhất khi a=b=c=1 (2)
\(a^3b^3c^3+b^3c^3+b^3\ge3b^2c\) Dấu = xảy ra duy nhất khi a=b=c=1 (3)
\(a^3b^3c^3+a^3c^3+c^3\ge3c^2a\)Dấu = xảy ra duy nhất khi a=b=c=1 (4)
Cộng (1),(2),(3),(4) vế theo vế ta được ĐPCM (Dấu = xảy ra khi a=b=c=1)
Đây là cách giải của mình k rõ bạn làm sao nếu có cách khác hay hơn thì xin chỉ giáo :D