K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho điều kiện:
\(2 \left(\right. 3 a - 2 b + c \left.\right) = a - 5 b\)

Ta cần chứng minh:
\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) \leq 0\)

Bước 1: Tìm biểu thức của \(N \left(\right. x \left.\right)\)

Giả sử \(N \left(\right. x \left.\right)\) là một đa thức bậc 2 dạng:

\(N \left(\right. x \left.\right) = a x^{2} + b x + c\)

Bước 2: Viết lại điều kiện đã cho

Điều kiện:

\(2 \left(\right. 3 a - 2 b + c \left.\right) = a - 5 b\)

Mở ngoặc:

\(6 a - 4 b + 2 c = a - 5 b\)

Chuyển hết về một vế:

\(6 a - 4 b + 2 c - a + 5 b = 0\)\(5 a + b + 2 c = 0\)

Bước 3: Tính \(N \left(\right. - 1 \left.\right)\) và \(N \left(\right. 2 \left.\right)\)

\(N \left(\right. - 1 \left.\right) = a \left(\right. - 1 \left.\right)^{2} + b \left(\right. - 1 \left.\right) + c = a - b + c\)\(N \left(\right. 2 \left.\right) = a \left(\right. 2 \left.\right)^{2} + b \left(\right. 2 \left.\right) + c = 4 a + 2 b + c\)

Bước 4: Tính tích \(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right)\)

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = \left(\right. a - b + c \left.\right) \left(\right. 4 a + 2 b + c \left.\right)\)

Mở rộng:

\(= a \left(\right. 4 a + 2 b + c \left.\right) - b \left(\right. 4 a + 2 b + c \left.\right) + c \left(\right. 4 a + 2 b + c \left.\right)\)\(= 4 a^{2} + 2 a b + a c - 4 a b - 2 b^{2} - b c + 4 a c + 2 b c + c^{2}\)\(= 4 a^{2} + \left(\right. 2 a b - 4 a b \left.\right) + a c + 4 a c + \left(\right. - b c + 2 b c \left.\right) - 2 b^{2} + c^{2}\)\(= 4 a^{2} - 2 a b + 5 a c + b c - 2 b^{2} + c^{2}\)

Bước 5: Sử dụng điều kiện \(5 a + b + 2 c = 0\)

Từ điều kiện, ta có thể biểu diễn \(b\) theo \(a\) và \(c\):

\(b = - 5 a - 2 c\)

Thay vào biểu thức tích:

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = 4 a^{2} - 2 a \left(\right. - 5 a - 2 c \left.\right) + 5 a c + \left(\right. - 5 a - 2 c \left.\right) c - 2 \left(\right. - 5 a - 2 c \left.\right)^{2} + c^{2}\)

Tính từng phần:

  • \(- 2 a b = - 2 a \left(\right. - 5 a - 2 c \left.\right) = 10 a^{2} + 4 a c\)
  • \(b c = \left(\right. - 5 a - 2 c \left.\right) c = - 5 a c - 2 c^{2}\)
  • \(- 2 b^{2} = - 2 \left(\right. - 5 a - 2 c \left.\right)^{2}\)

Trước tiên, tính \(\left(\right. - 5 a - 2 c \left.\right)^{2}\):

\(\left(\right. - 5 a - 2 c \left.\right)^{2} = 25 a^{2} + 20 a c + 4 c^{2}\)

Nên:

\(- 2 b^{2} = - 2 \left(\right. 25 a^{2} + 20 a c + 4 c^{2} \left.\right) = - 50 a^{2} - 40 a c - 8 c^{2}\)

Bước 6: Thay vào và rút gọn

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = 4 a^{2} + 10 a^{2} + 4 a c + 5 a c - 5 a c - 2 c^{2} - 50 a^{2} - 40 a c - 8 c^{2} + c^{2}\)

Nhóm các hạng tử cùng loại:

  • \(a^{2}\)\(4 + 10 - 50 = - 36 a^{2}\)
  • \(a c\)\(4 + 5 - 5 - 40 = - 36 a c\)
  • \(c^{2}\)\(- 2 - 8 + 1 = - 9 c^{2}\)

Vậy:

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = - 36 a^{2} - 36 a c - 9 c^{2} = - 9 \left(\right. 4 a^{2} + 4 a c + c^{2} \left.\right)\)

Bước 7: Xét biểu thức \(4 a^{2} + 4 a c + c^{2}\)

\(4 a^{2} + 4 a c + c^{2} = \left(\right. 2 a + c \left.\right)^{2} \geq 0\)

Vậy:

\(N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) = - 9 \left(\right. 2 a + c \left.\right)^{2} \leq 0\)

Kết luận:

\(\boxed{N \left(\right. - 1 \left.\right) \cdot N \left(\right. 2 \left.\right) \leq 0}\)

với đẳng thức xảy ra khi và chỉ khi \(2 a + c = 0\).

Tham khảo

15 tháng 7 2018

\(a^3+3a^2+5=5^b\)

\(\Rightarrow a^2\left(a+3\right)+5=5^b\)

\(\Rightarrow a^2.5^c+5=5^b\)(vì a+3=5c)

\(\Rightarrow a^2.5^{c-1}+1=5^{b-1}\) (chia cả 2 vế cho 5)

=> c - 1 = 0 hoặc b - 1 = 0

+) b = 1, khi đó ko thoả mãn

+) c = 1 => a = 2 => b = 2