Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a,b khác 0 thì:
\(\hept{\begin{cases}a\inℚ\\b\sqrt{3}\notinℚ\end{cases}}\Rightarrow a+b\sqrt{3}\notinℚ\) => Vô lý
Nếu \(a=b=0\Rightarrow0+0\sqrt{3}=0\left(tm\right)\)
Vậy a = b = 0
Trả lời:
Giả sử A # 0 ta có
(A√2) + B = 0 <> √2 = -B/A
Do B,A là số hữu tĩ (B = m/n,A = p/q) => -B/A cũng là số hữu tỉ
Nhưng do √2 là số vô tỉ => mâu thuẫn
Vậy A = 0 => B = 0
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
Do a,b bình đẳng , coi b>0
A) a;b cùng dấu
=> a dương => a>0
=>a/b<0/b=0
=> a/b là số hữu tỉ dương nếu a;b cùng dâu (1)
b) a và b khác dấu <=> a dương và b âm hoặc a âm và b dương
Nếu a dương và b âm thì số hữu tỉ : a/b =m/-n âm (a=m;b=-n)
Nếu a âm b dương thì số hữu tỉ a/b = -p/q âm ( a=-b ; b=q )
Khi a,b cùng dấu:
\(\frac{a}{b}>0\)
Khi a, b khác dấu:
\(\frac{a}{b}< 0\)
Xét số hữu tỉ \(\dfrac{a}{b}\) , có thể coi b > 0
a) Nếu a , b cùng dấu thì a > 0 và b > 0
Suy ra\(\dfrac{a}{b}>\dfrac{0}{b}=0\) tức là \(\dfrac{a}{b}\) dương
b) Nếu a,b khác dấu thì a < 0 và b > 0
Suy ra \(\dfrac{a}{b}< \dfrac{0}{b}=0\) tức là \(\dfrac{a}{b}\) âm