K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

a/ Có thể là vô tỉ. Ví dụ: \(\hept{\begin{cases}a=\sqrt{2}\\b=\sqrt{2}\end{cases}}\)

b/ Không thể vì

Giả sử a, b là số vô tỷ

Nếu \(\frac{a}{b}\)là số hữu tỷ thì có dạng

\(\hept{\begin{cases}a=m.q\\b=n.q\end{cases}\left(m,n\in Q;q\in I\right)}\)

\(\Rightarrow a+b=m.q+n.q=q\left(m+n\right)\in I\)

Trái giả thuyết.

c/ Có thể Ví dụ: \(\hept{\begin{cases}a=\sqrt{2}\\b=\sqrt{2}\end{cases}}\)

18 tháng 7 2017

\(\orbr{\begin{cases}\\\end{cases}}\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)

11 tháng 10 2019

<=> (a2+b2)(a+b)2- 2(a+b)2 +1+ a2b2 -2ab= -4ab <=> (a2+b2)(a2+b2+2ab)- 2(a+b)2+ a2b2+ 2ab+ 1=0

<=> [(a2+b2)2+(a2+b2).2ab+a2b2 ] - 2(a2+b2+2ab)+2ab+1=0 <=> (a2+b2+ab)2- 2(a2+b2+ab)+1=0

<=> (a2+b2+ab-1)2=0 <=> a2+b2+ab-1=0 <=> (a+b)2-(1+ab)=0 <=> (a+b)2 =1+ab => \(\sqrt{1+ab}=\)\(|a+b|\)là số hữu tỉ

15 tháng 8 2020

\(\left(GT\right)\Rightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(1+ab\right)+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\Rightarrow\left(a+b\right)^2-\left(1+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)^2=1+ab\Leftrightarrow\left|a+b\right|=\sqrt{1+ab}\left(a,b\inℚ\right)\)

9 tháng 11 2021

\(\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{b}\Leftrightarrow ab=bc+ac\Leftrightarrow2ab-2bc-2ac=0\\ \Leftrightarrow\sqrt{a^2+b^2+c^2}=\sqrt{a^2+b^2+c^2+2ab-2bc-2ac}\\ =\sqrt{\left(a+b-c\right)^2}=\left|a+b-c\right|\left(dpcm\right)\)

9 tháng 11 2021

Câu 23:

https://olm.vn/hoi-dap/detail/1732532846797.html

a: Để M là số nguyên thì 5 chia hết cho căn a+1

=>căn a+1 thuộc {1;5}

=>a thuộc {0;4}

b: Khi a=4/9 thì \(M=1+\dfrac{5}{\dfrac{2}{3}+1}=1+5:\dfrac{5}{3}=1+3=4\)

=>M là số nguyên

c: \(\sqrt{a}+1>=1\)

=>\(\dfrac{5}{\sqrt{a}+1}< =5\)

=>M<=6

\(1< =\dfrac{5}{\sqrt{a}+1}< =5\)

=>2<=M<=6

M=2 khi \(\dfrac{5}{\sqrt{a}+1}+1=2\)

=>\(\dfrac{5}{\sqrt{a}+1}=1\)

=>căn a+1=5

=>căn a=4

=>a=16

M=3 khi \(\dfrac{5}{\sqrt{a}+1}=2\)

=>căn a+1=5/2

=>căn a=3/2

=>a=9/4

M=4 thì \(\dfrac{5}{\sqrt{a}+1}=3\)

=>căn a+1=5/3

=>căn a=2/3

=>a=4/9

\(M=5\Leftrightarrow\dfrac{5}{\sqrt{a}+1}=4\)

=>căn a+1=5/4

=>căn a=1/4

=>a=1/16