K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

\(a^3+b^3=4ab\)

\(\Rightarrow a^3=4ab-b^3\)

\(\Rightarrow a=\dfrac{4ab-b^3}{a^2}\)

\(4-ab=4-\dfrac{4ab-b^3}{a^2}.b=4-\dfrac{4ab^2-b^4}{a^2}=\dfrac{4a^2-4ab^2+b^4}{a^2}=\dfrac{\left(2a-b^2\right)^2}{a^2}=\left(\dfrac{2a-b^2}{a}\right)^2\)

30 tháng 7 2018

Chúc bạn có 1 ngày vui vẻ!!!

29 tháng 12 2018

\(\frac{ab+2}{a^0}\)biểu thức hữu tỉ :)))

18 tháng 10 2017

Thay ab+bc+ac = 1 vào Q

18 tháng 10 2017

Thay ab+bc+ac = 1 và Q ta được :

\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương  của một số hữu tỉ (đpcm)

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 Đúng 3  Sai 0 Sky Blue đã chọn câu trả lời này.
 
30 tháng 8 2019

\(ab+bc+ac=1\)

\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)

\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Thay 1= 4(ab+bc+ca), Ta có: 

\(\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)

\(=4\left(ab+bc+ca+a^2\right).4\left(ab+bc+ca+b^2\right).4\left(ab+bc+ca+c^2\right)\)

\(=64.\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)\)

\(=64\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

\(=\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mà a, b, c là số hữu tỉ 

\(\Rightarrow\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)là bình phương một số hữu tỉ 

\(\Rightarrow\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)là bình phương một số hữu tỉ

6 tháng 7 2020

để chứng minh 1 trong 3 số a,b,c là lập phương của 1 số hữu tỉ ta sẽ chứng minh \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\) có ít nhất 1 số hữu tỉ

đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{b}\end{cases}}}\)

do abc=1 => xyz=1 (1)

từ đề bài => \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow x+y+z=xy+yz+xz\left(xyz\ge1\right)\left(2\right)\)

Từ (1)(2) => \(xyz+\left(x+y+z\right)-\left(xy+yz+zx\right)-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

vậy \( {\displaystyle \displaystyle \sum }x=1 \) chẳng hạn, => \(a=b^3\)

\(\Rightarrow\sqrt[3]{a}=b\)mà b là số hữu tỉ

Vậy trong 3 số \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\)có ít nhất 1 số hữu tỉ (đpcm)