Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + 5.b chia hết cho 7
=> 3.(a+5.b) chia hết cho 7
=> 3a+15b chia hết cho 7
Mà 7a và 14b đều chia hết cho 7
=> 3a+15n+7a-14b chia hết cho 7
=> 10a+b chia hết cho 7
=> ĐPCM
Tk mk nha
Ta có: \(P\left(x\right)=ax^2+bx+c\)
+) \(P\left(0\right)=a.0^2+b.0+c=c⋮7\)
+) \(P\left(1\right)=a.1^2+b.1+c=a+b+c\)
mà \(c⋮7\)
=> a+b\(⋮7\)(1)
+) \(P\left(2\right)=a.2^2+b.2+c=4a+2b+c=2\left(2a+b\right)+c\)
mà c chia hết cho 7
=>2(2a+b) chia hết cho 7
=> 2a+b chia hết cho 7 vì (2,7)=1
=> a+(a+b) chia hết cho 7
=> a chia hết cho 7 vì a+b chia hết cho7
=> b chia hết cho 7
vầy a,b,c chia hết cho 7
ta có f(x)=ax\(^2\)+bx+c
tại x=0 =>f(0)=c\(⋮\)7(1)
x=1=>f(1)=a+b+c\(⋮\)7
mà c\(⋮\)7=>a+b\(⋮\)7(2)
x=-1=>f(-1)=a-b+c
mà c\(⋮\)7=>a-b\(⋮\)7(3)
từ (2)(3)có a+b+a-b=2a\(⋮\)7
mà 2;7=(1)
=>a\(⋮\)7(4)
từ (4)(3)ta có a-b\(⋮\)7
a\(⋮\)7
=>b\(⋮\)7(5)
từ (1)(4)(5)suy ra a,b,c\(⋮\)7
\(A=2+2^2+......+2^{59}+2^{60}\)
\(A=2\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(A=2\cdot3+...+2^{59}\cdot3⋮3\)
\(2+2^2+2^3+....+2^{58}+2^{59}+2^{60}\)
\(=2\left(1+2+4\right)+....+2^{58}\left(1+2+4\right)\)
\(=2\cdot7+.....+2^{58}\cdot7⋮7\)
b) 817 - 279 -913 chia hết cho 405
Ta có: 817 - 279 -913 = 328- 327-326
= 326(32-3-1)
= 326. 5 = 322. 405 chia hết cho 405 (đpcm)
a) 106 - 57
= 26 . 56 - 57
= 56 . (26 - 5)
= 56 . (64 - 5)
= 56 . 59 chia hết cho 59
=> đpcm
b) 817 - 279 - 913
= (34)7 - (33)9 - (32)13
= 328 - 327 - 326
= 326 .(32 - 3 - 1)
= 326 . (9 - 3 - 1)
= 324 . 32 . 5
= 324 . 9 . 5
= 324 . 45 chia hết cho 45
=> đpcm
c) 87 - 218
= (23)7 - 218
= 221 - 218
= 218 . (23 - 1)
= 218 (8 - 1)
= 217 . 2 . 7
= 217 . 14 chia hết cho 14
=> đpcm
d) 109 + 108 + 107
= 107 . (102 + 10 + 1)
= 57 . 27 . (100 + 10 + 1)
= 57 . 26 . 2 . 111
= 57 . 26 . 222 chia hết cho 222
=> đpcm
Giải:
a) Ta có:
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4.55⋮55\)
Vậy ...
b) Ta có:
\(16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{15}.33⋮33\)
Vậy ...
c) \(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5⋮5⋮405\)
Vậy ...
Chúc bạn học tốt!
a) 76 +75 -74
=74.72 +74.7-74
=74.(72+7-1)
=74.55⋮55
b) 165+215
=(24)5 +215
=220+215
=215.25+215
=215.(25+1)
=215.33⋮33
c)817-279-913
=(34)7-(33)9......(làm tương tự)
Ta có: 76 + 75 - 74
= 74 . (49+7-1)
= 74 . 55 chia hết cho 11 => ĐPCM
Ta có: 2454⋅5424⋅210
= (23 . 3)54 . (33 . 2) . 210
= 2162 . 354 . 372. 224 . 210
= 2196 . 3126
= (2189 . 3126). 27
=7263 . 27 chia hết cho 63 => ĐPCM
a) \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.\left(16-2\right)=2^{17}.14⋮14\)
b) \(10^6-5^7=5^6.2^6-5^7=5^6.\left(2^6-5\right)=5^6.\left(64-5\right)=5^6.59⋮59\)
a) ta có : \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55⋮55\)
\(\Rightarrow7^4.55\) chia hết cho \(55\) \(\Leftrightarrow7^6+7^5-7^4\) chia hết cho \(55\)
vậy \(7^6+7^5-7^4\) chia hết cho \(55\) (đpcm)
b) ta có \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.\left(32+1\right)=2^{15}.33⋮33\)
\(\Rightarrow2^{15}.33\) chia hết cho \(33\) \(\Leftrightarrow16^5+2^{15}\) chia hết cho \(33\)
vậy \(16^5+2^{15}\) chia hết cho \(33\) (đpcm)
c) ta có \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)=3^{22}\left(729-243-81\right)=3^{22}.405⋮405\)
\(\Rightarrow3^{22}.405\) chia hết cho \(405\) \(\Leftrightarrow81^7-27^9-9^{13}\) chia hết cho \(405\)
vậy \(81^7-27^9-9^{13}\) chia hết cho \(405\) (đpcm)
\(a.\)
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮55\)
\(b.\)
\(16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33⋮33\)
\(c.\)
Ta có : \(405=3^4.5\)
\(\Rightarrow81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5⋮405\)
\(a^2+b^2->a^2:7;b^2:2\)
*\(a^2:7=>a:7\)
*\(b^2:7=>b:7\)
=>Vậy: a:7;b:7