\(\in N\)và \(a-5b⋮17\)

CMR:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

Đề sai, nếu a =22; b=1 thì 100a + b không chia hết cho 17

30 tháng 1 2020

Ta có 34a+17b=17(2a+b) chia hết cho 17
ta sẽ lấy 34a+17b trừ cho 10a+b ta có
24a+16b mà cả 2 số kia chia hết cho 17 nên
24a+16b chia hết cho 17 <=> 8(3a+2b) chia hết cho 17
Mà (8,17)=1 => 3a+2b chia hết cho 17 (Đpcm)

4 tháng 4 2018

Nếu \(a-11b+3c⋮17\Rightarrow2\left(a-11b+3c\right)⋮17\)

\(\Rightarrow2a-22b+6c⋮17\Rightarrow\left(2a-5b+6c\right)-17b⋮17\)

\(17b⋮17\Rightarrow2a-5b+3c⋮17\)

4 tháng 4 2018

Vì \(a-11b+3c\) chia hết cho 17 => \(2\left(a-11b+3c\right)\)chia hết cho 17 =>      \(2a-22b+6c\)

Ta có:     \(\left(2a-22b+6c\right)-\left(2a-5b+6c\right)=17b\)chia hết  cho 17

Mà 2a - 22b + 6c chia hết cho 17 nên => 2a - 5b + 6c chia hết cho 17

Vậy 2a - 5b + 6c chia hết cho 17.

18 tháng 3 2020

\(2a+3b⋮17\Leftrightarrow2a+3b+17\left(2a+b\right)⋮17\Leftrightarrow36a+20b=4\left(9a+5b\right)⋮17\)

\(\text{mà 17 và 4 là 2 số nguyên tố cùng nhau nên:}9a+5b⋮17\)

\(\text{vậy:}2a+3b⋮17\Leftrightarrow9a+5b⋮17\)

\(2a+3b⋮17\Rightarrow8a+12b⋮17\)

\(\Rightarrow8a+9b+9a+5b\)

\(=17a+17b=17\left(a+b\right)⋮17\)

mà \(8a+12b⋮17\Rightarrow9a+5b⋮17\)

và ngược lại nếu \(9a+5b⋮17\Leftrightarrow2a+3b⋮17\)

Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(17⋮17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(3a+2b⋮17\Rightarrow2.\left(10a+b\right)⋮17\)
Mà (2,10) = 1\(\Rightarrow10a+b⋮17\)
⇒ 3a+2b ⋮ 17 ⇌ 10a + b⋮ 17 ( đpcm )

AH
Akai Haruma
Giáo viên
3 tháng 2 2018

Lời giải:

Đây là bài chứng minh 2 chiều (\(\Leftrightarrow )\). Vì vậy, làm như bạn Thủy thì chỉ chứng minh được một chiều thuận thôi.

Ta có:

\(3a+2b\vdots 17\)

\(\Leftrightarrow 9(3a+2b)\vdots 17\) (do \(9,17\) nguyên tố cùng nhau)

\(\Leftrightarrow 27a+18b\vdots 17\)

\(\Leftrightarrow 27a+18b-17(a+b)\vdots 17\)

\(\Leftrightarrow 10a+b\vdots 17\)

Bài toán hai chiều được chứng minh.

19 tháng 4 2018

a-11b+3c\(⋮\)7

=> 2a-22b+6c\(⋮\)7

2a-22b+6c - (2a-5b+6c) = -17b\(⋮\)7

=> đpcm

8 tháng 3 2017

Ta có:\(a-11b+3c⋮17\)

\(\Rightarrow2a-22b+6c⋮17\)

Mặt khác:\(2a-22b+6c-\left(2a-5b+6c\right)\)

\(=2a-22b+6c-2a+5b-6c\)

\(\Rightarrow-17b⋮17\)

\(\Rightarrow2a-5b+6c⋮17\)