Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3a^3+7b^3\ge3a^3+6b^3\)
\(=3a^3+3b^3+3b^3\)
\(\ge3\sqrt[3]{3.a^3.3.b^3.3.b^3}=9ab^2\)
Dấu = xảy ra khi a = b = 0
\(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\frac{7}{2}b^3.\frac{7}{2}b^3}=ab^2.3\sqrt[3]{\frac{147}{4}}>9ab^2\)
Sửa đề:
\(3a^3+6b^3=a^3+a^3+a^3+b^3+b^3+b^3+b^3+b^3+b^3\)
\(\ge9\sqrt[9]{a^3.a^3.a^3.b^3.b^3.b^3.b^3.b^3.b^3}=9\sqrt[9]{a^9.b^{18}}=9ab^2\)
Lời giải:
Áp dụng BDDT AM-GM ta có:
\(a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^6}\)
\(\Rightarrow 3(a^3+2b^3)\geq 9ab^2\)
Vì \(b\geq 0\Rightarrow b^3\geq 0\Rightarrow b^3+3(a^3+2b^3)\ge 3(a^3+2b^3)\geq 9ab^2\)
hay \(3a^3+7b^3\geq 9ab^2\) (đpcm)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} a^3=b^3\\ b^3=0\end{matrix}\right.\Leftrightarrow a=b=0\)
Bài này có nhiều cách, làm cách ngắn gọn, phổ thông nhé:
Với \(a,b\ge0\)Áp dụng bất đẳng thức AM-GM cho ba số không âm ta có:
\(1+a+b\ge3\sqrt[3]{1.a.b}=3\sqrt[3]{ab}\)
\(a+b+ab\ge3\sqrt[3]{a.b.ab}=3\sqrt[3]{a^2b^2}\)
\(\Rightarrow\left(1+a+b\right)\left(a+b+ab\right)\ge3\sqrt[3]{ab}.3\sqrt[3]{a^2b^2}=9ab\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=1\\a=b=ab\end{cases}\Leftrightarrow a=b=1}\)
(p/s đừng ti ck cho câu trả lời này nhé)
ta có \(a\ge b\ge c\)
zì \(c\le b\)nên \(\left(a+b+c\right)^2\le\left(a+2b\right)^2\)
do zậy ta chỉ cần chứng minh \(9ab\ge\left(a+2b\right)^2\)
tương đương zới \(a^2-5ab+4b^2\le0\Leftrightarrow\left(a-b\right)\left(a-4b\right)\le0\)
zì \(a\ge b\)zà theo bất đẳng thức tam giác có \(a< b+c\le2b\le4b\)nên điều trên luôn đúng
zậy bất đẳng thức đc CM . dấu "=" xảy ra khi zà chỉ khi a=b=c hay tam giác ABC đều
Đề bài bị trái dấu bạn nhé
CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)
\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\)
\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0
CMTT các hạng tử khác
\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)
vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai
\(\left(a+b+c\right)^2-9ab\le\left(a+b+c\right)^2-9a^2=\left(a+b+c-3a\right)\left(a+b+c+3a\right)=\left(b+c-2a\right)\left(4a+b+c\right)\)
Vì \(a\ge b\ge c\Leftrightarrow b+c-2a\le0\)
\(\Rightarrow\left(a+b+c\right)^2-9ab\le0\)=> dpcm
Ta có:
\(3a^3+7b^3\ge3a^3+6b^3\)
Dấu "=" xảy ra <=> b=0
Mặt khác :
\(3a^3+6b^3=3a^3+3b^3+3b^3\ge9ab^2\)(Theo bđt Cô-si)
=> đpcm
Mih ko chắc đug nhưg mà thấy avatar để hih chị hương là vào liền
Kb nha (Fan ECADCA)
oki bạn