Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a). Ta có: a < b
=> -6a > -6b
mà 3 > 1
=> \(3-6a>1-6b\)
b)
Ta có: a < b
=> a - 2 < b - 2
=> \(7\left(a-2\right)< 7\left(b-2\right)\)
c)
Ta có: a < b
=> -2a > -2b
=> 1 - 2a > 1 - 2b
\(\Rightarrow\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)
Bài 1:
Áp dụng BĐt cauchy dạng phân thức:
\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)
dấu = xảy ra khi 2x+y=x+2y <=> x=y
Bài 2:
ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)
\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)
Áp dụng BĐT trên vào bài toán ta có:
\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
......
dấu = xảy ra khi a=b=c
Bài 2:
Áp dụng BĐT cauchy cho 2 số dương:
\(a^2+1\ge2a\)
\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)
thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)
cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm
dấu = xảy ra khi a=b=c=1
Câu 2:
a: 3x+4>2x+3
=>3x-2x>3-4
=>x>-1
b: =>8-11x<52
=>-11x<44
=>x>-4
Số \(ab>0\), nên \(\dfrac{1}{ab}>0\). Từ \(a>b\), nhân cả hai vế của bất đẳng thức với số \(\dfrac{1}{ab}\), có bất đẳng thức \(\dfrac{1}{a}< \dfrac{1}{b}\)
a: =>-4x>16
=>x<-4
c: =>20x-25<=21-3x
=>23x<=46
=>x<=2
d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)
=>40x-100-90x+30<36-12x-30x+15
=>-50x-70<-42x+51
=>-8x<121
=>x>-121/8
a) \(\dfrac{4\left(x-4\right)}{12}\)-\(\dfrac{3x}{12}\)-\(\dfrac{12}{12}\) = 0
\(\dfrac{4x-16-3x-12}{12}=0\)
\(\dfrac{x-28}{12}\)\(=0\)
x - 28 = 0
x = 28
Vậy x = 28
Bài 1. Giải các phương trình sau
a) \(5\left(x-2\right)=3\left(x+1\right)\)
\(\Leftrightarrow5x-10=3x+3\)
\(\Leftrightarrow5x-3x=10+3\)
\(\Leftrightarrow2x=13\)
\(\Leftrightarrow x=\dfrac{13}{2}\)
Vậy \(S=\left\{\dfrac{13}{2}\right\}\)
b) \(\dfrac{2x}{x+1}+\dfrac{3}{x-2}=2\left(1\right)\)
Điều kiện: \(x+1\ne0\Leftrightarrow x\ne-1\) và \(x-2\ne0\Leftrightarrow x\ne2\)
\(\left(1\right)\Leftrightarrow\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{2\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow2x\left(x-2\right)+3\left(x+1\right)=2\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2x^2-4x+3x+3=2x^2-4x+2x-4\)
\(\Leftrightarrow2x^2-4x+3x-2x^2+4x-2x=-3-4\)
\(\Leftrightarrow x=-7\left(N\right)\)
Vậy \(S=\left\{-7\right\}\)
c) \(|2x+7|=3\)
\(\Leftrightarrow2x+7=3\) hoặc \(2x+7=-3\)
.. \(2x+7=3\Leftrightarrow2x=-4\Leftrightarrow x=-2\)
.. \(2x+7=-3\Leftrightarrow2x=-10\Leftrightarrow x=-5\)
Vậy \(S=\left\{-2;-5\right\}\)
Bài 2 bạn ghi rõ đề lại nha r mik giải lun cho
Bài 2. Giải các bất phương trình sau:
a) \(\left(x+2\right)^2< \left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+4x+4< x^2-1\)
\(\Leftrightarrow x^2+4x-x^2< -4-1\)
\(\Leftrightarrow4x< -5\)
\(\Leftrightarrow x>-\dfrac{5}{4}\)
Vậy \(S=\left\{x/x< -\dfrac{5}{4}\right\}\)
Câu b mik tính ko ra nhá sorry!!!!!!!!!!
a: \(x< -9:\dfrac{3}{2}=-9\cdot\dfrac{2}{3}=-6\)
b: 2/3x>-2
hay x>-2:2/3=-3
c: \(2x>\dfrac{9}{5}-\dfrac{4}{5}=1\)
hay x>1/2
d: \(\Leftrightarrow x\cdot\dfrac{3}{5}>6-4=2\)
hay x>2:3/5=2x5/3=10/3
`a)` bạn xem lại đề ạ
`b)`
`a<b`
`<=>-5a> -5b`
`<=>-5a+7> -5b+7`
mà `-5b+7> -5b-1`
`<=>-5a+7 > -5b-1`