Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a>b\)
\(\Rightarrow-3a< -3b\) (Nhân cả 2 vế của BĐT với -3)
\(\Rightarrow4-3a< 4-3b\) (cộng cả 2 vế của BĐT với 4)
=> đpcm.
Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)
Khi đó điều kiện đb tương ứng
\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)
\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)
\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)
\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)
Do đó ta có đpcm
Chúc bạn học tốt!
Vì a < b
⇒ 3a < 3b (nhân hai vế với 3 > 0, BĐT không đổi chiều)
⇒ 3a + 1 < 3b + 1 (cộng hai vế với 1).
Vậy 3a + 1 < 3b + 1.
ta có: \(a< b\)
\(\Rightarrow-3a>-3b\)
\(\Rightarrow-3a+2023>-3b+2023\)
Ta có a<b
=>-3a>-3b
=>2-3a>2-3b(1)
mà 2-3b>1-3b(2)
Từ (1),(2)=>2-3a>1-3b
Bài làm
Ta có: a > b
=> 3a > 3b
=> 3a + 4 > 3b + 4 (1)
Mà 4 > 3
=> 3b + 4 > 3b + 3 (2)
Từ (1) và (2) => 3a + 4 > 3b + 3 ( đpcm )