Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a<b
=>-3a>-3b
=>2-3a>2-3b(1)
mà 2-3b>1-3b(2)
Từ (1),(2)=>2-3a>1-3b
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
Có 2a^2 + a = 3b^2 + b
<=> 2a^2 + a - 3b^2 - b = 0
<=> 3a^2 + a - 3b^2 - b = a^2
Xét (a-b).(3a+3b+1) = 3a^2-3ab+3ab-3b^2+a-b = 3a^2-3b^2+a-b = a^2 là 1 số chính phương (1)
Gọi ƯCLN của a-b;3a+3b+1 là d ( d thuộc N sao )
=> a-b chia hết cho d
3a+3b+1 chia hết cho d
a^2 chia hết cho d^2
=> a-b chia hết cho d , 3a+3b +1 chia hết cho d , a chia hết cho d
=> a chia hết cho d , b chia hết cho d , 3a+3b+1 chia hết cho d
=> 1 chia hết cho d => d = 1 ( vì d thuộc N sao )
=> a-b và 3a+3b+1 nguyên tố cùng nhau (2)
Từ (1) và (2) => a-b và 3a+3b+1 đều là số chính phương
Ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=\left(5a-3b\right)^2-16.4c^2\)
\(=\left(5a-3b\right)^2-16\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\left(đpcm\right)\)
Sửa đề: Chứng minh 3a + 2 < 3b + 5
a ≤ b
⇒ 3a ≤ 3b
⇒ 3a + 2 ≤ 3b + 2 (1)
2 < 5
⇒ 3b + 2 < 3b + 5 (2)
Từ (1) và (2) ⇒ 3a + 2 < 3b + 5
Ta có:
\(VT=(5a-3b+8c).(5a-3b-8c)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
Mà \(a^2-b^2=4c^2\) nên:
\(VT=25^2-30ab+9b^2-16.\left(a^2-b^2\right)\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2=VP\)
\(\Rightarrow\) Đpcm.
b/ VT = (7a – 3b)2 – 4c2 = 49a2- 42ab + 9b2 – 4c2
mà 10a2 = 10b2 + c2 nên c2 = 10a2 – 10b2
nên VT = 49a2 – 42ab + 9b2 – 4(10a2 – 10b2)
= 49a2 – 42ab + 9b2 – 40a2 + 40b2
= 9ª2 – 42ab + 49b2 = (3a – 7b)2 = VP
Ta có: a<b
⇔3a<3b
hay 3a+2<3b+2(đpcm)