K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

e) \(3a+15⋮3a-1\)

=> \(3a-1+16⋮3a-1\)

Mà \(3a-1⋮3a-1\)

=> \(16⋮3a-1\)

.............

4 tháng 11 2017

a) \(a+11⋮a+3\)

\(\Rightarrow\left(a+3\right)+8⋮a+3\)

Mà \(a+3⋮a+3\)

=> \(8⋮a+3\)

=> \(a+3\in\text{Ư}\left(8\right)=\left\{\text{ }\pm1;\pm2\pm4;\pm8\right\}\)

=> \(a\in\left\{-4;-2;-5;-1;-7;1;-11;5\right\}\)

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:
a.

$A=2+2^2+2^3+...+2^{100}$

$2A=2^2+2^3+2^4+...+2^{101}$

$\Rightarrow 2A-A=2^{101}-2$

$\Rightarrow A=2^{101}-2$

b.

Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$

Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$

Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$

AH
Akai Haruma
Giáo viên
6 tháng 7

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$

$=2+7(2^2+2^5+...+2^{98})$

$\Rightarrow A$ không chia hết cho 7

$\Rightarrow A$ không chia hết cho 14.

29 tháng 6 2017

1) A = 120a + 36b

=> A = 12.10.a + 12.3.b

=> A = 12.(10a+3b)

Do 12.(10a+3b) \(⋮\)12

nên 120a+36b \(⋮\)12

2) Gọi (2a+7b) là (1)

         (4a+2b) là (2)

Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)

Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3

Hay 4a+2b chia hết cho 3 

3) Gọi (a+b) là (1)

          (a+3b) là (2)

Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2

Hay (a+3b) chia hết cho 2

19 tháng 8 2021

(3a+1).(3a+2)

Ta có: nếu a là số lẻ thì 3a+1 là số chẵn

⇒(3a+1).(3a+2)⋮2   (thỏa mãn)

Ta có: nếu a là số chẵn thì 3a+2 là số chẵn

⇒(3a+1).(3a+2)⋮2   (thỏa mãn)

Vậy với mọi a thì (3a+1).(3a+2)⋮2

19 tháng 8 2021

(2a)2020=(2a)4.(2a)2016=16.a4.(2a)2016

Vì 16⋮16 nên (2a)2020⋮16

 

10 tháng 9 2018

1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )

\(a,b\in N\Rightarrow10a+3b\in N\)

Do đó\(12.\left(10a+3b\right)⋮12\)

Vậy\(A⋮12\)

2)

a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3

\(6b⋮3\)\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)

b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)

nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)

c) Ta có \(12a⋮12\);\(36b⋮12\)

nên \(12a+36b⋮12\)

Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)

nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)

\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh

P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không

9 tháng 9 2018

12a chứ ko phải 120a đâu

11 tháng 9 2018

1/ A=12(10a+3b) chia heets cho 12

2/

a/ 2a+7b Chia hết cho 3 => 2(2a+7b)=4a+14b=4a+2b+12b Chia hết cho 3 mà 12 b Chia hết cho 3 nên 4a+2b cũng chia hết cho 3

b/ a+b chia hết cho 2 nên a+b chẵn mà a+3b=(a+b)+2b. Do a+b chẵn và 2b chẵn => a+3b chẵn => a+3b chia hết cho 2

30 tháng 3 2021

Giả sử (4a+2b)⋮3(4a+2b)⋮3

⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3

⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)

=> Giả sử đúng

Vậy (4a+2b)⋮3