K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PY
1
DD
Đoàn Đức Hà
Giáo viên
22 tháng 6 2021
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}=\frac{a+b-\left(a-2b\right)}{c+d-\left(c-2d\right)}=\frac{3b}{3d}=\frac{b}{d}\)
\(\frac{a+b}{c+d}=\frac{b}{d}=\frac{a+b-b}{c+d-d}=\frac{a}{c}\)
Suy ra \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\).
LC
0
P
0
BH
1
18 tháng 7 2016
hỏi cái này ghi cho mình cái đề bài 2c cái nha. Cảm ơn nhìu.
a/b=c/d=2c/2d=a+2c/b+2d sau đó phân tích cái đẳng thức cần chứng minh đó thành tỉ lệ thức là được.
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\left(1\right)\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{2017b}{2017d}=\frac{a+2017b}{c+2017d}\left(2\right)\)
Từ (1) và (2) => \(\frac{a-2b}{c-2d}=\frac{a+2017b}{c+2017d}\Rightarrow\frac{\left(a-2b\right)^4}{\left(c-2d\right)^4}=\frac{\left(a+2017b\right)^4}{\left(c+2017d\right)^4}\)