\(\dfrac{1}{a^2+b^2+2}+\dfrac{1}{b^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2018

\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*

4 tháng 6 2018

\(\dfrac{1}{a^2+b^2+2}+\dfrac{1}{b^2+c^2+2}+\dfrac{1}{c^2+a^2+2}\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a^2+b^2}{a^2+b^2+2}+\dfrac{b^2+c^2}{b^2+c^2+2}+\dfrac{c^2+a^2}{c^2+a^2+2}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\ge\dfrac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\dfrac{\sqrt{3\left(a^2b^2+b^2c^2+a^2c^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\dfrac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Cần chứng minh \(\dfrac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*

6 tháng 6 2018

Em có cách khác :v

\(\dfrac{1}{a^2+b^2+2}\le\dfrac{1}{\dfrac{\left(a+b\right)^2}{2}+2}=\dfrac{1}{\dfrac{\left(3-c\right)^2}{2}+2}\\ =\dfrac{2}{\left(3-c\right)^2+4}=\dfrac{2}{c^2-6c+13}\)

Ta cần CM:

\(\dfrac{2}{c^2-6c+13}\le\dfrac{1}{8}c+\dfrac{1}{8}\\ \Leftrightarrow\left(3-c\right)\left(c-1\right)^2\ge0\left(luon;dung\right)\\ \Rightarrow A\le\dfrac{1}{8}a+\dfrac{1}{8}+\dfrac{1}{8}b+\dfrac{1}{8}+\dfrac{1}{8}c+\dfrac{1}{8}=\dfrac{3}{4}\)

Nguồn : Anh hùng

28 tháng 5 2018

Đặt \(\left(a,b,c\right)\rightarrow\left(\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}\right)\)

BĐT cần c/m tương đương với

\(\sum\dfrac{yz}{xy+xz+2yz}\le\dfrac{3}{4}\)

\(\Leftrightarrow\sum\dfrac{xy+xz}{xy+xz+2yz}\ge\dfrac{3}{2}\)

Ta có \(\sum\dfrac{xy+xz}{xy+xz+2yz}\ge\dfrac{\left(2\sum xy\right)^2}{\sum\left(xy+xz+2yz\right)\left(xy+xz\right)}=\dfrac{4\left(\sum xy\right)^2}{2\sum x^2y^2+6\sum x^2yz}\)

Như vậy ta cần c/m \(\dfrac{4\left(\sum xy\right)^2}{2\sum x^2y^2+6\sum x^2yz}\ge\dfrac{3}{2}\)

\(\Leftrightarrow8\left(\sum xy\right)^2\ge6\sum x^2y^2+18\sum x^2yz\)

\(\Leftrightarrow8\left(\sum xy\right)^2\ge6\left(\sum xy\right)^2+6\sum x^2yz\)

\(\Leftrightarrow\left(\sum xy\right)^2\ge3\sum x^2yz\) (luôn đúng)

28 tháng 5 2018

Ta có:

\(\dfrac{1}{ab+a+2}\le\dfrac{1}{4}\left(\dfrac{1}{ab+1}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{c}{1+c}+\dfrac{1}{a+1}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{a+1}{a+1}+\dfrac{b+1}{b+1}+\dfrac{c+1}{c+1}\right)=\dfrac{3}{4}\)

5 tháng 12 2018

Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)

                             LG

Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)

                                 \(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)

                                 \(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)

Khi đó :\(B=a+b+c+\frac{1}{abc}\)

   \(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)

\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)

 \(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy .........

4 tháng 12 2018

2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)

Áp dụng BĐT AM-GM ta có:

\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)

\(A\ge a+b+c-\frac{6}{2}\)

\(A\ge6-3\)

\(A\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)

                                 \(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)

                                 \(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)

Lấy \(\left(1\right)-\left(3\right)\)ta có:

\(2a-2c=c+b-a-b=c-a\)

\(\Rightarrow2a-2c-c+a=0\)

\(\Leftrightarrow3.\left(a-c\right)=0\)

\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)

Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)

\(\Rightarrow a=b=c=2\)

Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)

25 tháng 5 2017

Ta có: \(a^2+2b+3=a^2+2b+1+2\ge2\left(a+b+1\right)\)

Tương tự ta được: \(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1}+\dfrac{c}{c+a+1}\right)\)

Ta sẽ chứng minh \(\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1}+\dfrac{c}{c+a+1}\le1\)

\(\Leftrightarrow\dfrac{-b-1}{a+b+1}+\dfrac{-c-1}{b+c+1}+\dfrac{-a-1}{c+a+1}\le-2\)

\(\Leftrightarrow\dfrac{b+1}{a+b+1}+\dfrac{c+1}{b+c+1}+\dfrac{a+1}{c+a+1}\ge2\)

\(\Leftrightarrow\dfrac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\dfrac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\dfrac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\ge2\left(1\right)\)

Cần chứng minh BĐT (1) đúng

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b+c+3\right)^2}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\)

\(a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\)

\(=\dfrac{1}{2}\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+9\right]\)

\(=\dfrac{1}{2}\left(a+b+c+3\right)^2\)\(\Rightarrow VT\left(1\right)\ge2=VP\left(1\right)\)

Đẳng thức xảy ra khi \(a=b=c=1\)

26 tháng 5 2017

Bđt cauchy-schwarz dạng engel dạng tổng quát là j vây c

12 tháng 3 2018

Áp dụng bất đẳng thức Cauchy-Schwarz ta có:

\(\dfrac{1}{2a^2+b^2}=\dfrac{1}{a^2+a^2+b^2}\le\dfrac{1}{9}\left(\dfrac{1}{a^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

\(\left\{{}\begin{matrix}\dfrac{1}{2b^2+c^2}\le\dfrac{1}{9}\left(\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\\\dfrac{1}{2c^2+a^2}\le\dfrac{1}{9}\left(\dfrac{1}{c^2}+\dfrac{1}{c^2}+\dfrac{1}{a^2}\right)\end{matrix}\right.\)

Cộng theo vế:

\(L\le\dfrac{1}{9}\left(\dfrac{3}{a^2}+\dfrac{3}{b^2}+\dfrac{3}{c^2}\right)=\dfrac{1}{9}\left[3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\right]=\dfrac{1}{9}\)

14 tháng 7 2017

Ta có BĐT \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{1}{2}\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\) (đúng)

\(\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=1\)

Khi đó áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Tương tự cho 2 BĐT còn lại:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}=VP\)

Xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)

14 tháng 7 2017

Áp dụng BĐT Bu-nhi-a ta có:

\(\sqrt{a^2+1}=\sqrt{a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{4\left(a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)}\)

\(\ge\dfrac{1}{2}\sqrt{\left(a+\dfrac{1}{\sqrt{3}}.3\right)^2}=\dfrac{1}{2}\sqrt{\left(a+\sqrt{3}\right)^2}=\dfrac{a+\sqrt{3}}{2}\left(a>0\right)\)

Tương tự ta cũng có: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{2b}{b+\sqrt{3}}\)

\(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{2c}{c+\sqrt{3}}\)

=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\)

\(\le2\left(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\right)\) (1)

Áp dụng BĐT phụ: \(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{x+y}\) ta có:

\(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\)

\(=\dfrac{a}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{\left(a+c\right)+\left(b+c\right)}\)

\(\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{a+c}{a+c}+\dfrac{b+a}{a+b}+\dfrac{c+b}{b+c}\right)=\dfrac{3}{4}\) (2)

Từ (1); (2)

=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le2.\dfrac{3}{4}=\dfrac{3}{2}\left(đpcm\right)\)

Dấu = xảy ra <=> \(a=b=c=\dfrac{1}{\sqrt{3}}\)

3 tháng 12 2017

Có: \(\dfrac{a+1}{1+b^2}=\dfrac{\left(1+b^2\right).\left(a+1\right)-b^2\left(a+1\right)}{1+b^2}=a+1-\dfrac{b^2\left(a+1\right)}{1+b^2}\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương 1 và b2 ta được

\(1+b^2\ge2b\Rightarrow-\dfrac{b^2\left(a+1\right)}{1+b^2}\ge-\dfrac{b^2\left(a+1\right)}{2b}=-\dfrac{ab+b}{2}\)

\(\Rightarrow\dfrac{a+1}{1+b^2}\ge a+1-\dfrac{ab+b}{2}\)

CMTT\(\Rightarrow\dfrac{b+1}{1+c^2}\ge b+1-\dfrac{bc+c}{2};\dfrac{c+1}{1+a^2}\ge c+1-\dfrac{ac+a}{2}\)

\(\Rightarrow A\ge\left(a+b+c\right)+3-\dfrac{\left(ab+bc+ac\right)+\left(a+b+c\right)}{2}\)

Ta có \(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow ab+ac+bc\le\dfrac{1}{3}.3^2=3\)

\(\Rightarrow A\ge3+3-\dfrac{3+3}{2}=3\)(đpcm)

9 tháng 12 2018

Chả biết đúng hay sai,làm đại.:v

Dự đoán dấu "=" xảy ra tại a = b = c = 1

Với dự đoán đó,

Xét \(\dfrac{a+1}{1+b^2}=2-\dfrac{a+1}{1+b^2}\ge2-\dfrac{a+1}{2b}\)

Tương tự: \(\dfrac{b+1}{1+c^2}\ge2-\dfrac{b+1}{2c};\dfrac{c+1}{1+a^2}\ge2-\dfrac{c+1}{2a}\)

Cộng theo vế 3BĐT,ta có: \(VT\ge2+2+2-\dfrac{a+1}{2b}+\dfrac{b+1}{2c}+\dfrac{c+1}{2a}\)

\(=6-\dfrac{a+1}{2b}+\dfrac{b+1}{2c}+\dfrac{c+1}{2a}\)

\(\ge6-\dfrac{2b}{2b}+\dfrac{2c}{2c}+\dfrac{2a}{2a}=3^{\left(đpcm\right)}\) (do dự đoán a = b = c = 1 nên \(a+1\le2b\))

Vậy điều ta dự đoán là đúng.

Dấu "=" xảy ra khi a=b=c=1

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

Theo hệ quả quen thuộc của BĐT AM-GM thì:

\((a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Leftrightarrow (\sqrt{3})^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 1\)

\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{(a+b)(a+c)}}\)

Hoàn toàn TT với các phân thức còn lại và cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\) (BĐT Cauchy)

hay \(\text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)(đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)