K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\Rightarrow a=b=c\)

15 tháng 2 2018

\(-\left(a-c\right)-\left(a-b+c\right)+\left(-d+c\right)\)

\(=-a-c-a+b-c-d+c\)

\(=-2a-c+b-d\)

25 tháng 2 2020

https://olm.vn/hoi-dap/detail/26908384795.html

Bạn tham khảo ở đây nha !

 Chúc bạn hok tốt

25 tháng 2 2020

Ta có \(VT=\left(a+b\right)\left(c+d\right)-\left(a+d\right)\left(b+c\right)\)

\(=ac+ad+bc+bd-ab-ac-bd-cd\)

\(=ad+bc-ab-cd\)

\(=a\left(d-b\right)-c\left(d-b\right)=\left(a-c\right)\left(d-b\right)=VP\)(đpcm)

4 tháng 2 2017

a, (a-b+c)-(a+c)=-b

<=>a-b+c-a-c=-b

<=>(a-a)+(c-c)-b=-b

<=>0+0-b=-b

<=>-b=-b

Vậy (a-b+c)-(a+c)=-b

b) (a+b)-(b-a)+c=2a+c

<=>a+(b-b)+a+c=2a+c

<=>a+a+c=2a+c

<=>2a+c=2a+c

Vậy (a+b)-(b-a)+c=2a+c

c) -(a+b-c)+(a-b-c)=-2b

<=>-a-b+c+a-b-c=-2b

<=>(-a+a)+(c-c)-(b+b)=-2b

<=>0+0-2b=-2b

<=>-2b=-2b

Vậy -(a+b-c)+(a-b-c)=-2b

d) a(b+c)-a(b+d)=a(c-d)

<=>ab+ac-ab-ad=a(c-d)

<=>a(b+c-b-d)=a(c-d)

<=>a(c-d)=a(c-d)

Vậy a(b+c)-a(b+d)=a(c-d)

e) a(b-c)+a(c+d)=a(b+d)

<=>ab-ac+ac+ad=a(b+d)

<=>a(b-c+c+d)=a(b+d)

<=>a(b+d)=a(b+d)

Vậy a(b-c)+a(c+d)=a(b+d)

22 tháng 12 2017

 M=(-a+b)-(b+c-a) +(c-a)

=-a+b-b-c+a+c-a

=-a

nếu a<0 thì -a>0 khi đó M>0 (dpcm)

22 tháng 12 2017

M = (-a + b) - (b + c - a) + (c - a)

    = -a + b - b - c + a + c - a

   = (a - a) + (b - b) + (c - c) - a   

   = -a

Vậy nếu a là số âm(a >0) thì -a là số dương vì -a là số đối của a

Do đó M la dương hay M > 0

21 tháng 1 2019

Đề sai \(B=-c-a-b\)

Để chứng minh A và B là hai số đối nhau thì nhớ đến tổng của chúng bằng 0

\(A+B=a+b+c-c-a-b\)

\(\Rightarrow A+B=0\)

25 tháng 1 2019

\(A=a+b+c;B=c-a-b\)

\(\Rightarrow A+B=\left(a+b+c\right)+\left(c-a-b\right)\)

\(\Rightarrow A+B=\left(a-a\right)+\left(b-b\right)+\left(c-c\right)\)

\(\Rightarrow A+B=0\)

=> A và B đối nhau

Hoàng Trung Kiên-M10 Thailand làm đúng rồi đó !!!

NV
16 tháng 1

Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)

\(\Rightarrow a=k^2.k.a^4\)

\(\Rightarrow a=k^3a^4\)

\(\Rightarrow\left(ka\right)^3=1\)

\(\Rightarrow ka=1\)

\(\Rightarrow a=\dfrac{1}{k}\) (1)

Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)

\(\Rightarrow c=\dfrac{1}{k}\) (2)

Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)

\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)

(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)

TH1: \(a=b=c\)

\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)

Th2: \(a=c=-b\)

\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)

28 tháng 7 2017

cậu lấy a+b mà bằng 0 thì đối  nhau

28 tháng 7 2017

mình biết ...nhưng trình bày thì mk ko làm đc

4 tháng 1 2018

Bài 3 : Cho a . b , tính |S| biết : S=-(-a-b-c) + (-c+b+a) - (a+b)

Đề sai ,ko bao giờ đề cho a.b vì chỉ có cộng trừ thôi .Nên đề phải là a>b

Ta có: S=-(-a-b-c) + (-c+b+a) - (a+b)

S= -a+b+c-c+b+a-a-b

S= (-a+a-a)+(b+b-b)+(c-c)

S=-a+b+0

S=b-a

Mà \(a>b\Rightarrow b-a< 0\)

\(\Leftrightarrow\left|S\right|=\left|b-a\right|=a-b\)

Vậy |S|=|b-a|=a-b

4 tháng 1 2018

pn nào trả lời cả 4 ms dc nha