Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em không vẽ được hình, xin thông cảm
a, Ta có góc EAN= cungEN=cung EC+ cung EN
Mà cung EC= cung EB(E là điểm chính giữa cung BC)
=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)
=> tam giác AEN đồng dạng tam giác FED
Vậy tam giác AEN đồng dạng tam giác FED
b,Ta có EC=EB=EM
Tam giác EMC cân tại E => EMC=ECM
MÀ EMC+AME=180, ECM+ABE=180
=> AME = ABE
=> tam giác ABE= tam giác AME
=> AB=AM => tam giác ABM cân tại A
Mà AE là phân giác => AE vuông góc BM
CMTT => AC vuông góc EN
MÀ AC giao BM tại M
=> M là trực tâm tam giác AEN
Vậy M là trực tâm tam giác AEN
c, Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH
Vì M là trực tâm của tam giác AEN
=> \(EN\perp AN\)
Mà \(OI\perp AN\)(vì I là trung điểm của AC)
=> \(EN//OI\)
MÀ O là trung điểm của EH
=> I là trung điểm của MH (đường trung bình trong tam giác )
=> tứ giác AMNH là hình bình hành
=> AH=MN
Mà MN=NC
=> AH=NC
=> cung AH= cung NC
=> cung AH + cung KC= cung KN
Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )
NBK là góc nội tiếp chắn cung KN
=> gócKMC=gócKBN
Hay gócKMC=gócKBM
=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)
Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

a) xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0\)(AB , AC tiếp tuyến)
=>\(\widehat{ABO}+\widehat{ACO}=180^0\)
=> tứ giác ABOC nội tiếp
=> \(\widehat{BOA}=\widehat{ACB}\)( chắn \(\widebat{BA}\))
b) ta có \(\hept{\begin{cases}AB=AC\left(cmt\right)\\OB=OC=R\end{cases}}\)
=> AO là đường trung trực của BC
=> \(AH\perp BC,HB=HC\)
=> \(\Delta IHB=\Delta IHC\left(c.g.c\right)\)
=>\(\widehat{HBI}=\widehat{ICH}=>\widebat{CI}=\widebat{BI}\)
\(=>\widehat{IBA}=\widehat{IBH}\)( chắn CI , BI )
=> IB là tia phân giác của góc ABC
c)xét tam giác OCA có \(CH\perp CA=>OC^2=OH.OA\)
mà \(OC=OD=>OC^2=OD^2\)
=>\(OD^2=OH.OA\)
mình làm lại nha
câu c, d nè :
c) áp dụng hệ thức lượng trong tam giác zuông ABO ta có
\(OH.OA=OB^2=OD^2=>OH.OA=OD^2\Leftrightarrow\)\(\frac{OH}{OD}=\frac{OD}{OA}=>\Delta OHD=\Delta ODA=>\widehat{OAD}=\widehat{ODH}\)
gọi J là là tâm đường tròn ngoại tiếp tam giác AHD
khi đó \(\widehat{OAD}=\frac{1}{2}\widehat{DJH}\)
zậy
\(\widehat{JDO}=\widehat{ODH}+\widehat{JDH}=\frac{1}{2}\widehat{DJH}+\widehat{JDH}=\frac{1}{2}\left(\widehat{DJH}+2\widehat{JDH}\right)=\frac{1}{2}.180^0=90^0\)
=> OD là ....
d) CHỉ ra M, N thuộc trung trực AH
theo cm ở cau C thì \(OD\perp JD\)nên J thuộc tiếp tuyến tại D của (O)
Mặt khác J là tâm đường tròn ngoại tiếp tam giác AHD nên J thuộc trung trực của AC
zậy J là giao điểm của tiếp tuyến tại D của (O) zà đường trung trực AD
=> J trùng E
zậy E là tâm đường tròn ngoại tiếp tam giác AHD nên E thuộc trung trực của AH
mặt khác M , N đều thuộc trung trực của AH nên M ,E ,N thẳng hàng
Các bạn ơi, giúp mk vs, mai mk phải đi hc r mà ko có bài
Lấy M bất kì trên EF nhé các bạn