K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

vẽ thêm tiếp tuyến MH cắt OA tại R, gọi I là giao điểm của OA và BC., K là giao điểm EF và OA

tam giác MKI vuông tại K có: MI^2=IK^2+ KM^2 (1)

tam giác MOH vuông tại H có MH^2= OM^2- OH^2 = OK^2+KM^2- OH^2 ( tam giác OKM vuông tại K)

chứng minh OK^2-OH^2=OK^2-OB^2=OK^2 - OI.OA( tam giác OAB vuông tại B có BI là đường cao, OB = OH =R)

=(OI + IK)^2 - OI(OI+2IK)=OI^2 + 2OI.IK+IK^2-OI^2- 2OI.IK=IK^2       ( IA = 2IK) 

suy ra MH^2= IK^2+ KM^2 (2)

từ (1) và (2) suy ra MH = MI mà MH = MT ( t/c 2 tt cắt nhau), MI = MA ( cm tam giác MAI cân tại M)

suy ra MT = MA

25 tháng 2 2020

Giúp mình với ạ <3 

26 tháng 2 2020

d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D

co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)

ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)

suy ra \(\Delta CED\) deu => EC=CD (1)

mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)

=> tam giac CDF can tai C

suy ra CD=CF (2)

tu (1),(2) suy ra dpcm

17 tháng 11 2023

a: Sửa đề: AEBF là hình chữ nhật

Xét tứ giác AEBF có

AB cắt EF tại trung điểm của mỗi đường

nên AEBF là hình bình hành

Hình bình hành AEBF có AB=EF

nên AEBF là hình chữ nhật

b: ΔBEH vuông tại E

mà EP là đường trung tuyến

nên EP=PB=PH=HB/2

Xét ΔOBP và ΔOEP có

OB=OE

BP=EP

OP chung

Do đó: ΔOBP=ΔOEP

=>\(\widehat{OEP}=\widehat{OBP}=90^0\)

=>PE là tiếp tuyến của (O)

c: AM\(\perp\)EF

=>\(\widehat{AFE}+\widehat{MAK}=90^0\)

mà \(\widehat{AFE}=\widehat{ABE}\)(AFBE là hình chữ nhật)

nên \(\widehat{MAK}+\widehat{ABE}=90^0\)

mà \(\widehat{ABE}=\widehat{AHK}\left(=90^0-\widehat{BAH}\right)\)

nên \(\widehat{MAK}+\widehat{AHK}=90^0\)

mà \(\widehat{MKA}+\widehat{AHK}=90^0\)(ΔAKH vuông tại A)

nên \(\widehat{MAK}=\widehat{MKA}\)

=>MA=MK

\(\widehat{MAK}+\widehat{MAH}=90^0\)

\(\widehat{MKA}+\widehat{MHA}=90^0\)

mà \(\widehat{MAK}=\widehat{MKA}\)

nên \(\widehat{MAH}=\widehat{MHA}\)

=>MA=MH

mà MA=MK

nên MK=MH

=>M là trung điểm của KH 

27 tháng 6 2020

Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )

a) Chứng minh rằng ABOC là tứ giác nội tiếp

b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC

c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC