\(\left(a^3+b^3-a^3b^3\right)+27a^6b^6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

\(\left(a^3+b^3-a^3b^3\right)+27a^6b^6=\left[\left(a+b\right)^3-3ab\left(a+b\right)-a^3b^3\right]+27a^6b^6\)

Thay ab=a+b, ta có:

\(=\left(a^3b^3-3a^2b^2-a^3b^3\right)+27a^6b^6\)

\(=27a^6b^6-3a^2b^2\)

21 tháng 6 2019

Có: \(ab=a+b\)

\(\Leftrightarrow b=a\left(b-1\right)\)

\(\Leftrightarrow a=\frac{b}{b-1}=1-\frac{1}{b-1}\)

\(\Leftrightarrow b-1\inƯ\left(1\right)=\left\{1;-1\right\}\).Tương tự với a

\(\Rightarrow\hept{\begin{cases}b=2\Rightarrow a=2\\b=0\Rightarrow a=1\end{cases}\&a=0;b=1}\)

Tính được rồi đấy 

a: \(=4\left|a-3\right|=4\left(a-3\right)=4a-12\)

b: \(=9\cdot\left|a-9\right|=9\left(9-a\right)=81-9a\)

c: \(a^3b^6\cdot\sqrt{\dfrac{3}{a^6b^4}}=a^3b^6\cdot\dfrac{\sqrt{3}}{-a^3b^2}=-b^4\sqrt{3}\)

d: \(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a-b}\)

\(=\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

22 tháng 6 2018

https://hoc24.vn/hoi-dap/question/626535.html

Tôi trả lời nhầm ở đây do 2 câu gần nhau và giống nhau quá!

30 tháng 7 2018

1. c)\(\left(\sqrt{6}-2\right)\left(\sqrt{6}+7\right)\)

\(\Leftrightarrow6+7\sqrt{6}-2\sqrt{6}-14\)

\(\Leftrightarrow-8+5\sqrt{6}\)

d)\(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)

\(\Leftrightarrow3-5\sqrt{3}+2\sqrt{3}-3\)

\(\Leftrightarrow-3\sqrt{3}\)

29 tháng 7 2018

@ngonhuminh @ngonhuminh

31 tháng 7 2018

1.a) (\(\sqrt{12}\) -3\(\sqrt{75}\))\(\sqrt{3}\)

=\(\sqrt{12}\).\(\sqrt{3}\)-3\(\sqrt{75}\).\(\sqrt{3}\)

=\(2\sqrt{3}.\sqrt{3}-3.5\sqrt{3}.\sqrt{3}\)

=2.3-15.3

=6-45

= -39

b)\(\left(\sqrt{18}-4\sqrt{72}\right)2\sqrt{2}\)

\(\left(3\sqrt{2}-4.6\sqrt{2}\right).2\sqrt{2}\)

\(\left(3\sqrt{2}-24\sqrt{2}\right).2\sqrt{2}\)

\(3\sqrt{2}.2\sqrt{2}-24\sqrt{2}.2\sqrt{2}\)

= 6.2-48.2 = 12-96= -84

d)\(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)

\(3-5\sqrt{3}+2\sqrt{3}-10\)

\(-7-3\sqrt{3}\)

30 tháng 7 2018

\(\)c)\(\left(\sqrt{6}-2\right)\left(\sqrt{6}+7\right)\)

\(\Leftrightarrow6+6\sqrt{7}-2\sqrt{6}-14\)

\(\Leftrightarrow-8+5\sqrt{6}\)

d)\(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)

\(\Leftrightarrow3-5\sqrt{3}+2\sqrt{3}-3\)

\(\Leftrightarrow-3\sqrt{3}\)

AH
Akai Haruma
Giáo viên
10 tháng 9 2020

Bài 1:
Xét tử số:

\(\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}=\sqrt{3^2+5+2.3\sqrt{5}}-\sqrt{3^2+5-2.3\sqrt{5}}\)

\(=\sqrt{(3+\sqrt{5})^2}-\sqrt{(3-\sqrt{5})^2}=3+\sqrt{5}-(3-\sqrt{5})=2\sqrt{5}\)

Xét mẫu số:
\(\sqrt{(\sqrt{5}+1)\sqrt{6-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{5+1-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{(\sqrt{5}-1)^2}}\)

\(=\sqrt{(\sqrt{5}+1)(\sqrt{5}-1)}=\sqrt{4}=2\)

Do đó: $A=\frac{2\sqrt{5}}{2}=\sqrt{5}$

10 tháng 9 2020

dạ em cảm ơn