K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

\(\left(a^3+b^3-a^3b^3\right)+27a^6b^6=\left[\left(a+b\right)^3-3ab\left(a+b\right)-a^3b^3\right]+27a^6b^6\)

Thay ab=a+b, ta có:

\(=\left(a^3b^3-3a^2b^2-a^3b^3\right)+27a^6b^6\)

\(=27a^6b^6-3a^2b^2\)

21 tháng 6 2019

Có: \(ab=a+b\)

\(\Leftrightarrow b=a\left(b-1\right)\)

\(\Leftrightarrow a=\frac{b}{b-1}=1-\frac{1}{b-1}\)

\(\Leftrightarrow b-1\inƯ\left(1\right)=\left\{1;-1\right\}\).Tương tự với a

\(\Rightarrow\hept{\begin{cases}b=2\Rightarrow a=2\\b=0\Rightarrow a=1\end{cases}\&a=0;b=1}\)

Tính được rồi đấy 

22 tháng 6 2018

https://hoc24.vn/hoi-dap/question/626535.html

Tôi trả lời nhầm ở đây do 2 câu gần nhau và giống nhau quá!

a: \(=4\left|a-3\right|=4\left(a-3\right)=4a-12\)

b: \(=9\cdot\left|a-9\right|=9\left(9-a\right)=81-9a\)

c: \(a^3b^6\cdot\sqrt{\dfrac{3}{a^6b^4}}=a^3b^6\cdot\dfrac{\sqrt{3}}{-a^3b^2}=-b^4\sqrt{3}\)

d: \(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a-b}\)

\(=\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

9 tháng 6 2018

Đặt A=\(\left(\frac{-a}{2}+\frac{b}{3}+\frac{c}{6}\right)^3+\left(\frac{a}{3}+\frac{b}{6}-\frac{c}{2}\right)^3+\left(\frac{a}{6}-\frac{b}{2}+\frac{c}{3}\right)^3\)

\(=\left(\frac{-3a+2b+c}{6}\right)^3+\left(\frac{2a+b-3c}{6}\right)^3+\left(\frac{a-3b+2c}{6}\right)^3\)

\(=\left(\frac{-3a+2b+c+2a+b-3c+a-3b+2c}{6}\right)^3-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)

(Hằng đẳng thức)

\(=0-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)

\(\Rightarrow\frac{\left(a-3b+2c\right)\left(-3a+2b+c\right)\left(2a+b-3c\right)}{72}=\frac{1}{8}\)

\(\Leftrightarrow\left(a-3b+2c\right)\left(2a+b-3c\right)\left(-3a+2b+c\right)=9\)(đpcm).

26 tháng 11 2021

A = 0

26 tháng 11 2021

A=0