K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

ta có : a) \(a.\left(-b\right)=-a.b=-\left(2,3\right)=-2,3\)

b) \(\left(-a\right).\left(-b\right)=a.b=2,3\)

c) \(a.\left(-2b\right)\Leftrightarrow-2ab=-2\left(2,3\right)=-4,6\)

d) \(\left(-3a\right).\left(2b\right)=-6ab=-6.\left(2,3\right)=-13,8\)

7 tháng 8 2017

a)a x (-b)=-2,3

b)(-a) x (-b)=2,3

c)a x (-2b)=-4,6

d)(-3a) x (2b) =2,3 x (-6)=-13,8

16 tháng 11 2021

làm ơn trả lời hộ mk với ah mai mk phải nộp bài r

gianroi

15 tháng 6 2016

Ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{-4}=>\frac{5a}{10}=\frac{2b}{6}=\frac{c}{-4}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{5a}{10}=\frac{2b}{6}=\frac{c}{-4}=\frac{5a-2b+c}{10-6+\left(-4\right)}=\frac{1}{0}=error\)

Xem lại đề

15 tháng 6 2016

đề lỗi ròi

25 tháng 2 2022

b.\(ĐK:x;y\in Z^+;x;y\ne0\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{5}{x}+\dfrac{5}{y}=1\)

\(\Leftrightarrow\dfrac{5}{x}=1-\dfrac{5}{y}\)

\(\Leftrightarrow\dfrac{5}{x}=\dfrac{y-5}{y}\)

\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{y-5}\)

\(\Leftrightarrow x=\dfrac{5y}{y-5}\)

\(\Leftrightarrow x=5+\dfrac{25}{y-5}\) ( bạn chia \(5y\) cho \(y-5\) ý )

Để x;y là số nguyên dương thì \(25⋮y-5\) hay \(y-5\in U\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

TH1: 

\(y-5=1\) 

\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=30\end{matrix}\right.\) ( tm )   ( bạn thế y=6 vào \(x=5+\dfrac{25}{y+5}\) nhé )

Xét tương tự, ta ra được nghiệm nguyên dương của phương trình:

\(\left\{{}\begin{matrix}x=30\\y=6\end{matrix}\right.\)  \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\)  \(\left\{{}\begin{matrix}x=6\\y=30\end{matrix}\right.\)

25 tháng 2 2022

Câu a mik ko bt nên bạn tham khảo nhé:

https://hoc24.vn/cau-hoi/cho-a-b-c-0-va-day-ti-so-dfrac2bc-aadfrac2c-babdfrac2ab-cctinh-p-dfracleft3a-2brightleft3b-2crightleft.177725456910

5 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{3bk+2b}{2bk+3b}=\frac{\left(3k+2\right)b}{\left(2k+3\right)b}=\frac{3k+2}{2k+3}\)(1)

       \(\frac{3dk+2d}{2dk+3d}=\frac{\left(3k+2\right).d}{\left(2k+3\right).d}=\frac{3k+2}{2k+3}\)(2)

Từ (1) và (2), suy ra :  \(\frac{3a+2b}{2a+3b}=\frac{3c+2d}{2c+3d}\)